K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài làm

Gọi số đo của ba góc A, B, C lần lượt là x, y, z

Mà số đo của các góc lần lượt tỉ lệ với \(\frac{1}{2};\frac{1}{3};\frac{2}{5}\)

=> \(x.\frac{1}{2}.\frac{1}{30}\)\(x.\frac{1}{3}.\frac{1}{30}\)=\(x.\frac{2}{5}.\frac{1}{30}\)

=> \(\frac{x}{60}\)\(\frac{y}{90}\)\(\frac{z}{75}\)

Vì theo định lí, tổng ba góc của tam giác là 180o

=> x + y + z = 180o

Áp dụng tính chất dãy tỉ số bằng nhau:

Ta có: \(\frac{x}{60}=\frac{y}{90}=\frac{z}{75}=\frac{x+y+z}{60+90+75}=\frac{180}{225}=\frac{36}{45}=\frac{4}{5}\)

Do đó: \(\hept{\begin{cases}\frac{x}{60}=\frac{4}{5}\\\frac{y}{90}=\frac{4}{5}\\\frac{z}{75}=\frac{4}{5}\end{cases}}\Rightarrow\hept{\begin{cases}x=48\\y=72\\z=60\end{cases}}\)

Vậy độ dài của góc A là 48o

       độ dài của góc B là 72o

       độ dài của góc C là 60o

# Chúc bạn học tốt #

9 tháng 12 2016

1/Tính

\(\left(\frac{3}{7}\right)^{20}:\left(\frac{9}{49}\right)^5\)

\(=\left(\frac{3}{7}\right)^{20}:\left(\frac{3^2}{7^2}\right)^5\)

\(=\left(\frac{3}{7}\right)^{20}:\left(\frac{3}{7}\right)^{10}\)

\(=\left(\frac{3}{7}\right)^{10}\)

2/ Ta có:A+B+C = 180 độ ( tổng 3 góc tam giác)

Và : \(A.\frac{1}{2}=B.\frac{1}{3}=C.\frac{2}{5}\)

hay \(\frac{A}{\frac{2}{1}}=\frac{B}{\frac{3}{1}}=\frac{C}{\frac{5}{2}}\)

Áp dụng tính chất dãy tỉ số bằng nhau:

\(\frac{A}{\frac{2}{1}}=\frac{B}{\frac{3}{1}}=\frac{C}{\frac{5}{2}}=\frac{A+B+C}{\frac{2}{1}+\frac{3}{1}+\frac{5}{2}}=\frac{180}{\frac{15}{2}}=24\)

=> \(A=24.\frac{2}{1}=48\)độ

     \(B=24.\frac{3}{1}=72\)độ

      \(C=24.\frac{5}{2}=60\)độ

10 tháng 5 2017

Theo đề bài ta có: \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\)\(\dfrac{\widehat{A}}{3}=\dfrac{\widehat{B}}{5}=\dfrac{\widehat{C}}{7}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\dfrac{\widehat{A}}{3}=\dfrac{\widehat{B}}{5}=\dfrac{\widehat{C}}{7}=\dfrac{\widehat{A}+\widehat{B}+\widehat{C}}{3+5+7}=\dfrac{180^o}{15}=12^o\)

\(\Rightarrow\widehat{A}=12^o.3=36^o\)

\(\widehat{B}=12^o.5=60^o\)

\(\widehat{C}=12^o.7=84^o\)

16 tháng 7 2017

nếu số đo (độ) các góc của tam giác ABC là A , B , C (độ) thì theo điều kiện bài ra và tính chất của dãy tỉ số bằng nhau , ta có \(\dfrac{A}{3}=\dfrac{B}{5}=\dfrac{C}{7}=\dfrac{A+B+C}{3+5+7}=\dfrac{180}{15}=12\)

vậy : A = 3 . 12 = 36

B = 5 . 12 = 60

C = 7 . 12 = 84

=> A = 36 (độ) ; B = 60 (độ) ; C = 84 (độ)

18 tháng 11 2018

Ta có \(\widehat{A}+\widehat{B}+\widehat{C}=180\)

Lại có: \(\frac{\widehat{A}}{3}=\frac{\widehat{B}}{4}=\frac{\widehat{C}}{5}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{\widehat{A}}{3}=\frac{\widehat{B}}{4}=\frac{\widehat{C}}{5}=\frac{\widehat{A}+\widehat{B}+\widehat{C}}{3+4+5}=\frac{180}{12}=15\)

Suy ra \(\widehat{A}=3\cdot15=45\)độ, \(\widehat{B}=4\cdot15=60\)độ, \(\widehat{C}=15\cdot5=75\)độ

Chúc bạn học tốt!

Tk giúp mk nha

18 tháng 11 2018

Ta có : \(\widehat{A}+\widehat{B}+\widehat{C}\)=180o ( tổng 3 góc của tam giác )

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{\widehat{A}}{3}=\frac{\widehat{B}}{4}=\frac{\widehat{C}}{5}=\frac{\widehat{A}+\widehat{B}+\widehat{C}}{3+4+5}=\frac{180^o}{12}=15^o\)

\(\hept{\begin{cases}\frac{\widehat{A}}{3}=15^o\Rightarrow\widehat{A}=15^o.3=45^o\\\frac{\widehat{B}}{4}=15^o\Rightarrow\widehat{B}=15^o.4=60^o\\\frac{\widehat{C}}{5}=15^o\Rightarrow\widehat{C}=15^o.5=75^o\end{cases}}\)

Vậy góc A=45o ; góc B=60o ; góc C=75o

18 tháng 1 2018

A C B D M

Do tổng ba góc trong tam giác bằng 180o mà tam giác ABC có số đo các góc lần lượt tỉ lệ với 3, 2, 1 nên ta có: 

\(\widehat{A}=90^o;\widehat{B}=60^o;\widehat{C}=30^o\)

Ta có \(\Delta AMD=\Delta CMD\left(c-g-c\right)\Rightarrow\widehat{MAD}=\widehat{MCD}=30^o\)

\(\Rightarrow\widehat{BAM}=\widehat{BAC}-\widehat{MAD}=90^o-30^o=60^o\)

Xét tam giác ABM có \(\widehat{ABM}=\widehat{BAM}=60^o\Rightarrow\widehat{AMB}=60^o\)

Vậy tam giác ABM là tam giác đều.

29 tháng 2 2020

tự mà lm

24 tháng 12 2021

Tổng các góc trong tam giác là 180 độ

Gọi số đo các góc lần lượt là x,y,z

Ta có:

\(\frac{x}{3}=\frac{y}{2}=\frac{z}{1}=\frac{x+y+z}{3+2+1}=\frac{180}{6}=30\)

=> x=90; y=60; z=30

Tam giác ABC vuông tại A

D trung điểm AC; DM vuông góc BC => M trung điểm BC

=> AM trung tuyến thuộc cạnh huyền

=> Góc ABM = góc BAM = 60 độ

=> Tam giác ABM đều

Bài 2: 

Đặt số đo góc B là x, số đo góc C là y

Theo đề, ta có:

\(\left\{{}\begin{matrix}x+y=90\\x-y=24\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=114\\x+y=90\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=57^0\\y=33^0\end{matrix}\right.\)

7 tháng 12 2016

Bài 1:

Xét \(\Delta ABC\) có:

\(\widehat{A}+\widehat{B}+\widehat{C}=180^o\)(ĐL tổng 3 góc 1 \(\Delta\))

\(\Rightarrow30^o+70^o+\widehat{C}=180^o\) (Vì \(\widehat{A}=30^o;\widehat{B}=70^o\) (gt))

\(\Rightarrow\widehat{C}=180^o-30^o-70^o=80^o\)

Bài 2:

Xét \(\Delta ABC\) (vuông tại A) có:

\(\widehat{B}+\widehat{C}=90^o\) (Tc \(\Delta\) vuông)

\(\Rightarrow\widehat{B}+40^o=90^o\) (Vì \(\widehat{C}=40^o\) (gt))

\(\Rightarrow\widehat{B}=90^o-40^o=50^o\)

7 tháng 12 2016

Giải:

+) Ta có: \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\) ( 3 góc của tam giác )

\(\Rightarrow30^o+70^o+\widehat{C}=180^o\)

\(\Rightarrow\widehat{C}=80^o\)

Vậy...

+) Ta có: \(\widehat{B}+\widehat{C}=90^o\) ( do tam giác có \(\widehat{A}=90^o\) )

\(\Rightarrow40^o+\widehat{B}=90^o\)

\(\Rightarrow\widehat{B}=50^o\)

Vậy...