Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm
Gọi số đo của ba góc A, B, C lần lượt là x, y, z
Mà số đo của các góc lần lượt tỉ lệ với \(\frac{1}{2};\frac{1}{3};\frac{2}{5}\)
=> \(x.\frac{1}{2}.\frac{1}{30}\)= \(x.\frac{1}{3}.\frac{1}{30}\)=\(x.\frac{2}{5}.\frac{1}{30}\)
=> \(\frac{x}{60}\)= \(\frac{y}{90}\)= \(\frac{z}{75}\)
Vì theo định lí, tổng ba góc của tam giác là 180o
=> x + y + z = 180o
Áp dụng tính chất dãy tỉ số bằng nhau:
Ta có: \(\frac{x}{60}=\frac{y}{90}=\frac{z}{75}=\frac{x+y+z}{60+90+75}=\frac{180}{225}=\frac{36}{45}=\frac{4}{5}\)
Do đó: \(\hept{\begin{cases}\frac{x}{60}=\frac{4}{5}\\\frac{y}{90}=\frac{4}{5}\\\frac{z}{75}=\frac{4}{5}\end{cases}}\Rightarrow\hept{\begin{cases}x=48\\y=72\\z=60\end{cases}}\)
Vậy độ dài của góc A là 48o
độ dài của góc B là 72o
độ dài của góc C là 60o
# Chúc bạn học tốt #
1/Tính
\(\left(\frac{3}{7}\right)^{20}:\left(\frac{9}{49}\right)^5\)
\(=\left(\frac{3}{7}\right)^{20}:\left(\frac{3^2}{7^2}\right)^5\)
\(=\left(\frac{3}{7}\right)^{20}:\left(\frac{3}{7}\right)^{10}\)
\(=\left(\frac{3}{7}\right)^{10}\)
2/ Ta có:A+B+C = 180 độ ( tổng 3 góc tam giác)
Và : \(A.\frac{1}{2}=B.\frac{1}{3}=C.\frac{2}{5}\)
hay \(\frac{A}{\frac{2}{1}}=\frac{B}{\frac{3}{1}}=\frac{C}{\frac{5}{2}}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{A}{\frac{2}{1}}=\frac{B}{\frac{3}{1}}=\frac{C}{\frac{5}{2}}=\frac{A+B+C}{\frac{2}{1}+\frac{3}{1}+\frac{5}{2}}=\frac{180}{\frac{15}{2}}=24\)
=> \(A=24.\frac{2}{1}=48\)độ
\(B=24.\frac{3}{1}=72\)độ
\(C=24.\frac{5}{2}=60\)độ
Theo đề bài ta có: \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\) và \(\dfrac{\widehat{A}}{3}=\dfrac{\widehat{B}}{5}=\dfrac{\widehat{C}}{7}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\dfrac{\widehat{A}}{3}=\dfrac{\widehat{B}}{5}=\dfrac{\widehat{C}}{7}=\dfrac{\widehat{A}+\widehat{B}+\widehat{C}}{3+5+7}=\dfrac{180^o}{15}=12^o\)
\(\Rightarrow\widehat{A}=12^o.3=36^o\)
\(\widehat{B}=12^o.5=60^o\)
\(\widehat{C}=12^o.7=84^o\)
nếu số đo (độ) các góc của tam giác ABC là A , B , C (độ) thì theo điều kiện bài ra và tính chất của dãy tỉ số bằng nhau , ta có \(\dfrac{A}{3}=\dfrac{B}{5}=\dfrac{C}{7}=\dfrac{A+B+C}{3+5+7}=\dfrac{180}{15}=12\)
vậy : A = 3 . 12 = 36
B = 5 . 12 = 60
C = 7 . 12 = 84
=> A = 36 (độ) ; B = 60 (độ) ; C = 84 (độ)
Ta có \(\widehat{A}+\widehat{B}+\widehat{C}=180\)
Lại có: \(\frac{\widehat{A}}{3}=\frac{\widehat{B}}{4}=\frac{\widehat{C}}{5}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{\widehat{A}}{3}=\frac{\widehat{B}}{4}=\frac{\widehat{C}}{5}=\frac{\widehat{A}+\widehat{B}+\widehat{C}}{3+4+5}=\frac{180}{12}=15\)
Suy ra \(\widehat{A}=3\cdot15=45\)độ, \(\widehat{B}=4\cdot15=60\)độ, \(\widehat{C}=15\cdot5=75\)độ
Chúc bạn học tốt!
Tk giúp mk nha
Ta có : \(\widehat{A}+\widehat{B}+\widehat{C}\)=180o ( tổng 3 góc của tam giác )
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{\widehat{A}}{3}=\frac{\widehat{B}}{4}=\frac{\widehat{C}}{5}=\frac{\widehat{A}+\widehat{B}+\widehat{C}}{3+4+5}=\frac{180^o}{12}=15^o\)
\(\hept{\begin{cases}\frac{\widehat{A}}{3}=15^o\Rightarrow\widehat{A}=15^o.3=45^o\\\frac{\widehat{B}}{4}=15^o\Rightarrow\widehat{B}=15^o.4=60^o\\\frac{\widehat{C}}{5}=15^o\Rightarrow\widehat{C}=15^o.5=75^o\end{cases}}\)
Vậy góc A=45o ; góc B=60o ; góc C=75o
A C B D M
Do tổng ba góc trong tam giác bằng 180o mà tam giác ABC có số đo các góc lần lượt tỉ lệ với 3, 2, 1 nên ta có:
\(\widehat{A}=90^o;\widehat{B}=60^o;\widehat{C}=30^o\)
Ta có \(\Delta AMD=\Delta CMD\left(c-g-c\right)\Rightarrow\widehat{MAD}=\widehat{MCD}=30^o\)
\(\Rightarrow\widehat{BAM}=\widehat{BAC}-\widehat{MAD}=90^o-30^o=60^o\)
Xét tam giác ABM có \(\widehat{ABM}=\widehat{BAM}=60^o\Rightarrow\widehat{AMB}=60^o\)
Vậy tam giác ABM là tam giác đều.
Tổng các góc trong tam giác là 180 độ
Gọi số đo các góc lần lượt là x,y,z
Ta có:
\(\frac{x}{3}=\frac{y}{2}=\frac{z}{1}=\frac{x+y+z}{3+2+1}=\frac{180}{6}=30\)
=> x=90; y=60; z=30
Tam giác ABC vuông tại A
D trung điểm AC; DM vuông góc BC => M trung điểm BC
=> AM trung tuyến thuộc cạnh huyền
=> Góc ABM = góc BAM = 60 độ
=> Tam giác ABM đều
Bài 2:
Đặt số đo góc B là x, số đo góc C là y
Theo đề, ta có:
\(\left\{{}\begin{matrix}x+y=90\\x-y=24\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=114\\x+y=90\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=57^0\\y=33^0\end{matrix}\right.\)
Bài 1:
Xét \(\Delta ABC\) có:
\(\widehat{A}+\widehat{B}+\widehat{C}=180^o\)(ĐL tổng 3 góc 1 \(\Delta\))
\(\Rightarrow30^o+70^o+\widehat{C}=180^o\) (Vì \(\widehat{A}=30^o;\widehat{B}=70^o\) (gt))
\(\Rightarrow\widehat{C}=180^o-30^o-70^o=80^o\)
Bài 2:
Xét \(\Delta ABC\) (vuông tại A) có:
\(\widehat{B}+\widehat{C}=90^o\) (Tc \(\Delta\) vuông)
\(\Rightarrow\widehat{B}+40^o=90^o\) (Vì \(\widehat{C}=40^o\) (gt))
\(\Rightarrow\widehat{B}=90^o-40^o=50^o\)
Giải:
+) Ta có: \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\) ( 3 góc của tam giác )
\(\Rightarrow30^o+70^o+\widehat{C}=180^o\)
\(\Rightarrow\widehat{C}=80^o\)
Vậy...
+) Ta có: \(\widehat{B}+\widehat{C}=90^o\) ( do tam giác có \(\widehat{A}=90^o\) )
\(\Rightarrow40^o+\widehat{B}=90^o\)
\(\Rightarrow\widehat{B}=50^o\)
Vậy...