Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có biến đổi góc như sau
\(\widehat{BIK}=\frac{1}{2}\widehat{A}+\frac{1}{2}\widehat{B}=\widehat{KAC}+\widehat{IBC}=\widehat{KBC}+\widehat{IBC}=\widehat{IBK}\)
=> tam giác BKI cân tại K nên KB =KI = KC
Hay K là tâm đường tròn ngoại tiếp tam giác IBC
a) Do E , F là các tiếp điểm của (I) zới AC , AB nên \(\widehat{EFD\:=}\widehat{CED},\widehat{FED}=\widehat{BFD},EF//PQ\)
=>\(\widehat{EFD}=\widehat{AQF},\widehat{FED}=\widehat{APE}.\) mặt khác \(\widehat{PEA}=\widehat{CED},\widehat{AQF}=\widehat{BFD}\)suy ra tam giác FQA\(_{\simeq}\)tam giác PEA (g.g)
=>\(\frac{QA}{EA}=\frac{AF}{AP}=>AP.AQ=AE.FA=AE^2\)
hay \(\frac{BK\left(AB+AC\right)}{BC}\ge2BK\Leftrightarrow\frac{AB+AC}{BC}\ge2\)khi tam giác ABC đều thì \(\frac{AB+AC}{BC}=2\). Zậy GTNN của\(\frac{AB+AC}{BC}=2\)
b)ÁP dụng dịnh lý Ptolemy cho tứ giác ABKC
ta có \(AK.BC=AB.Ck=Bk\left(AB+AC\right)\)
tam giác AOD cân \(\widehat{AOI}\le90^0\Leftrightarrow IA\ge IK\Leftrightarrow IA+IK\ge2IK\Leftrightarrow AK\ge2IK\)suy ra\(\frac{BK\left(AB+AC\right)}{BC}\ge2IK\)
thầy cô tích cho em di ạ . em cố gắng để giải bài này r
A B C E F D O I