K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 6 2020

a, 

+) Cách 1: 

Xét △ABC cân tại A (AB = AC) có: AH là phân giác BAC 

=> AH là đường trung trực => ∠AHB = 90o và H là trung điểm BC => HB = HC

+) Cách 2:

Xét △BAH và △CAH

Có: AB = AC (gt)

  ∠BAH = ∠CAH (gt)

   AH là cạnh chung

=> △BAH = △CAH (c.g.c)

=> BH = CH (2 cạnh tương ứng)

P/s: chọn 1 trong 2 cách xong làm tiếp 

Ta có: HB = HC = BC : 2 = 8 : 2 = 4 (cm)

Xét △ABH vuông tại H có: AH2 + BH2 = AB2 (định lý Pytago)

=> AH2 = AB2 - BH2 = 52 - 42 = 9

=> AH = 3 (cm)

b, 

+) Cách 1: 

Xét △MAH vuông tại M và △NAH vuông tại N

Có: AH là cạnh chung

     ∠MAH = ∠NAH (gt)

=> △MAH = △NAH (cg-gn)

=> AM = AN (2 cạnh tương ứng) => A thuộc đường trung trực của MN

và MH = NH (2 cạnh tương ứng) => H thuộc đường trung trực của MN

=> AH là đường trung trực của MN

+) Cách 2: Gọi AH ∩ MN = { I }

Xét △MAH vuông tại M và △NAH vuông tại N

Có: AH là cạnh chung

     ∠MAH = ∠NAH (gt)

=> △MAH = △NAH (cg-gn)

=> AM = AN (2 cạnh tương ứng)

Xét △MAI và △NAI 

Có: AM = AN (cmt)

   ∠MAI = ∠NAI (gt)

    AI là cạnh chung

=> △MAI = △NAI (c.g.c)

=> MI = NI (2 cạnh tương ứng) => I là trung điểm MN  

và ∠MIA = ∠NIA (2 góc tương ứng)

Mà ∠MIA + ∠NIA = 180o (2 góc kề bù)

=> ∠MIA = ∠NIA = 180o : 2 = 90o

=> AI ⊥ MN

Mà I là trung điểm MN 

=> AI là đường trung trực MN

=> AH là đường trung trực MN  ( AH ∩ MN = { I } )

P/s: chọn 1 trong 2 cách xong làm tiếp 

Vì AM = AN (cmt) => △AMN cân tại A => ∠AMN = (180o - ∠MAN) : 2

Vì △ABC cân tại A => ∠ABC = (180o - ∠BAC) : 2

=> ∠AMN = ∠ABC

Mà 2 góc này nằm ở vị trí đồng vị

=> MN // BC (dhnb)

c, Xét △MAH vuông tại M có: AH > AM (quan hệ giữa đường xiên và đường vuông góc)

Xét △MBH vuông tại M có: BH > MB (quan hệ giữa hình chiếu và đường xiên)

Ta có: 2AH + BC = 2AH + 2BH  (BH = BC : 2  => 2BH = BC)

=> 2AH + 2BH > 2AM + 2MB

=> 2AH + BC > 2(AM + MB) = 2AB

Bài 1: Cho tam giác ABC vuông tại A. Trên cạnh BC lấy điểm E sao cho BE=BA. Qua E kẻ đường thẳng d vuông góc với BC và d cắt AC tại D.a) Tính độ dìa AC khi AB= 9cm, BC= 15cmb) Chứng minh: Tam giác ABD=tam giác EBDc) Gọi H là giao điểm của đường thẳng AB và đường thẳng d. Chứng minh tam giác HBC când) Chứng minh: AD<DCBài 2: Cho tam giác ABC vuông tại A có AB= 12cm, AC= 16cm.Kẻ BF là đường trung tuyến của tam...
Đọc tiếp

Bài 1: Cho tam giác ABC vuông tại A. Trên cạnh BC lấy điểm E sao cho BE=BA. Qua E kẻ đường thẳng d vuông góc với BC và d cắt AC tại D.

a) Tính độ dìa AC khi AB= 9cm, BC= 15cm

b) Chứng minh: Tam giác ABD=tam giác EBD

c) Gọi H là giao điểm của đường thẳng AB và đường thẳng d. Chứng minh tam giác HBC cân

d) Chứng minh: AD<DC

Bài 2: Cho tam giác ABC vuông tại A có AB= 12cm, AC= 16cm.Kẻ BF là đường trung tuyến của tam giác ABC. Từ điểm C kẻ đường thẳng vuông góc với AC cắt đường trung tuyến BF tại D

a) Tính độ dài BC?

b) Chứng minh rằng: Tam giác ABF=tam giác CDF

c) Chứng minh: BF<(AB+BC):2

Bài 3: Cho tam giacsABC vuông tại A; tia phân giác của góc B cắt AC tại D. Kẻ DH vuông góc với BC\(\left(H\in BC\right)\). Gọi K là giao điểm của AB và DH

a) Tính độ dài BC khi AB= 9cm, AC= 12cm

b) Chứng minh: Tam giác ABD=tam giác HBD

c) Chứng minh: Tam giác KDC cân

d) Chứng minh: AB+AC>BD+DC
Bài 4: Cho tam giác ABC vuông tại A. Trên tia BC lấy điểm H sao cho BH=BA. Tia phân giác của góc B cắt AC tại D. Gọi K là giao điểm của AB và DH

a) Tính độ dài BC khi AB= 3cm, AC= 4cm

b) Chứng minh: Tam giác ABD=tam giác HBD

c) Chứng minh \(Dh\perp BC\)

d) So sánh DH với DK

 

 

6
3 tháng 5 2019

4 bài toàn là hình, lại khó, dài , mk nghĩ chắc ko ai tl giúp bn đâu, xl nha, ngay mk mới lp 6 cx chưa thể giải đc vì đã lp 7 đâu. ah hay là bn gửi tg bài 1 cho các bn ấy giải từ từ, cứ 1 đốg thì ai giải giúp bn đc. sorry nha

*In đậm: quan trọng.

3 tháng 5 2019

#)Góp ý :

Giải thì vẫn giải đc, chỉ tại dài quá, người nhìn thấy dài thì chẳng ai muốn giải đâu, vì lười, mak mún kiếm P nhanh mà, là mình thì vẫn giải đc nhưng sẽ mất tg đó, chắc 15-30p :v

16 tháng 8 2018

a) Xét Δ AHB vàΔ AHC có:

AH chung

AB =AC (vì Δ ABC cân tại A theo gt)

AH ⊥ BC (vì AH là đường cao theo gt)

⇒ Δ vuông AHB= Δ vuông AHC ( cạnh huyền- cạnh góc vuông)

Sửa đề ( đề sai : HD // AC )
b) Ta có : Δ AHB = Δ AHC (câu a)

⇒ ∠BAH = ∠CAH ( 2 góc tương ứng) (1)

Ta lại có: HD // AC (gt )

⇒ ∠DHA = ∠HAC (so le trong) (2)
Từ (1), (2)⇒ ∠BAH =∠ DAH ⇔ AD = DH ( theo tính chất Δ cân) (*)

Có HD // AC ⇒ ∠ACB = ∠DHB ( đồng vị ) (3)
△ABC cân tại A ⇒ ∠ABC = ∠ACB ( tính chất tam giác cân ) (4)
Từ (3) và (4) ⇒ ∠ABC = ∠DHB ⇒ ΔBDH cân tại D
⇒BD = HD (**)

Từ (*) (**) ⇒AD=DH=BD

c) Ta có: Δ ABH = Δ ACH (câu a) ⇔ BH =HC (hai cạnh tương ứng)

⇒ AH là trung tuyến Δ ABC tại A ( 3)

Ta có : DH //AC ⇒ ∠DHB =∠ACB ( vì đồng vị )

mà ΔABC cân tại A(gt) ⇒ ∠ABC= ∠ACB

⇒ ∠DHB =∠DBH ⇒ DB =DH (theo tính chất Δ cân)

mà ta có AD=DH (câu b) ⇒ DA=DB

⇒ CD là trung tuyến Δ ABC tại C (4)

Từ (3), (4) , AC cắt CD tại G ⇒ G là trọng tâm Δ ABC

mà CE =EA ⇒ BE là trung tuyến Δ ABC tại B

⇒ BE qua G ⇒ B,G,E thẳng hàng

19 tháng 8 2018

bạn ơi cảm phiền bạn vẽ hình cho mình luon đc không ạ?

9 tháng 2 2019

mong các bạn giúp mình nhanh ạ

9 tháng 2 2019

A B C 5 5 8 H D E

Cm: Ta có: AB = AC <=> t/giác ABC là t/giác cân tại A 

                            <=> góc B = góc C

Xét t/giác ABH và t/giác ACH

có góc BHA = góc CHA = 900 (gt)

  AB = AC = 5 cm (gt)

góc B = góc C (cmt)

=> t/giác ABH = t/giác ACH (ch - gn)

=> BH = CH (hai cạnh tương ứng)

=> góc BAH = góc CAH (hai góc tương ứng)

b) Ta có: BH = CH = BC/2 = 8/2 = 4 (cm)

Xét t/giác ABH vuông tại H (áp dụng định lí Pi - ta- go)

=> AB2 = AH2 + BH2

=> AH2 = 52 - 4 = 9 = 32

=> AH = 3 (cm)

c) Xét t/giác ADH và t/giác AEH

có góc ADH = góc AEH = 900(gt)

   AH : chung

góc DAH = góc EAH (cmt)

=> t/giác ADH = t/giác AEH (ch - gn)

=> HD = HE (hai cạnh tương ứng)

=> t/giác HDE là t/giác cân tại H 

29 tháng 1 2019

Ngu vãi 

9 tháng 5 2020

hung huyen ngu vai

11 tháng 7 2015

Nhiều quá, chắc không làm nổi

19 tháng 7 2015

làm xong có lẹ mk thành thần đất sét mất rồi

4 tháng 6 2020

a ) Ta có : 

+) \(AB< AC\) ( gt )  

 \(\Rightarrow ACB< ABC\) ( quan hệ gữa góc và cạnh đối diện )

+ ) \(ABH+BAH+AHB=180\)( tổng ba góc trong một tam giác )

\(\Rightarrow ABH+60+90=180\)

\(\Rightarrow ABH=30\)

b ) Ta có :\(AD\)là phân giác góc \(A\) ( gt ) 

\(\Rightarrow BAD=CAD=\frac{BAC}{2}=\frac{60}{2}=30\)

Mà \(ABH=30\) ( cmt ) 

\(\Rightarrow ABH=BAD\)

\(\Rightarrow ABH=BAI\)

Xét tam giác \(AIB\) và tam giác \(BHA\) có : 

\(AB\) chung 

\(AIB=BHA=90\)

\(BAI=ABH\)

\(\Rightarrow\) tam giác \(AIB\) \(=\) tam giác \(BHA\) ( g - c - g ) 

c ) Xét tam giác \(ABI\) có : 

\(ABI+BAI+AIB=180\)( tổng ba góc trong một tam giác )

\(\Rightarrow ABI+30+90=180\)

\(\Rightarrow ABI=60\)

\(\Rightarrow ABE=60\)                                 ( 1 ) 

 Xét tam giác \(ABE\) có : 

\(ABE+BAE+AEB=180\)  ( tổng ba góc trong một tam giác )

\(\Rightarrow60+60+AEB=180\)

\(\Rightarrow AEB=60\)                                  ( 2 ) 

Mà \(BAE=60\) ( gt )                         ( 3 )  

Từ ( 1 ) ; ( 2 ) ; ( 3 ) 

\(\Rightarrow\) tam giác \(ABE\) đều 

 
 
 
9 tháng 6 2020

Chứng minh câu d: 

A B C D H E I 1

Ta có: AE = AB < AC 

=> E thuộc canh AC 

\(\Delta\)ABE đều mà AD vuông BE tại I => AD là đường trung trực của DE => DB = DE  (1)

Dễ chứng minh \(\Delta\)ABD = \(\Delta\)AED 

=> ^ABD = ^AED => ^B1 = ^DEC  ( góc ngoài ) 

mà ^B1 là góc ngoài của \(\Delta\)ABC tại B => ^B> ^C 

=> ^DEC > ^C = ^ECD 

Xét trong \(\Delta\)DEC có: ^DEC > ^ECD => DC > DE (2) 

Từ (1); (2) => DC > DB 

I ) Cho tam giác ABC vuông tại A có AB=3cm; AC=4cma) Tính độ dài BCb) Kẻ Bm là tia p.g của \(\widehat{ABC}\left(M\in AC\right),MH⊥BC\left(H\in BC\right)\)Chứng minh \(\Delta BMA=\Delta BMH\)c) Chứng minh AM<MCd) Trên tia đối của tia AB lấy N sao cho AN=CH. Chứng minh 3 điểm N,M,H thẳng hàngII ) Cho tam giác ABC có AB=3cm; AC=4cm: BC=5cm. Kẻ đường cao AH \(\left(H\in BC\right)\)1) Chứng tỏ tam giác ABC là tam giác vuông2) Trên cạnh BC...
Đọc tiếp

I ) Cho tam giác ABC vuông tại A có AB=3cm; AC=4cm

a) Tính độ dài BC

b) Kẻ Bm là tia p.g của \(\widehat{ABC}\left(M\in AC\right),MH⊥BC\left(H\in BC\right)\)Chứng minh \(\Delta BMA=\Delta BMH\)

c) Chứng minh AM<MC

d) Trên tia đối của tia AB lấy N sao cho AN=CH. Chứng minh 3 điểm N,M,H thẳng hàng

II ) Cho tam giác ABC có AB=3cm; AC=4cm: BC=5cm. Kẻ đường cao AH \(\left(H\in BC\right)\)

1) Chứng tỏ tam giác ABC là tam giác vuông

2) Trên cạnh BC lấy D sao cho BD=BA, trên cạnh AC lấy E sao AE=AH. Gọi F là giao điểm của DE và AH, Chứng minh

a) \(DE⊥AC\)

b) \(\Delta ACF\)cân

c) \(BC+AH>AC+AB\)

III ) Cho tam giác ABC vuôg tại B có \(\widehat{BAC=60^o}\).Vẽ tia p.g AD của \(\widehat{BAC}\left(D\in BC\right)\)từ D vẽ \(DE⊥AC\left(E\in AC\right)\). Chứng minh rằng

a) \(AB=AE\)

b) \(AD⊥BE\)

c) \(DC>AB\)

                                    GIÚP MÌNK NHA!!!!!!!!!

 

0
7 tháng 3 2017

A B C H N M

Bài này xét từng cặp tam giác thôi.

a) Xét \(\Delta ABH\)và \(\Delta ACH\)có:

\(AH\): chung

\(\widehat{AHB}=\widehat{AHC}=90\)độ

\(\widehat{ABH}=\widehat{ACH}\)( cùng phụ \(\widehat{BAC}\))

\(\Rightarrow\Delta ABH=\Delta ACH\left(g.c.g\right)\)

\(\Rightarrow HB=HC\)(hai cạnh t.ứng)

Mấy câu sau bạn làm nốt. Gợi ý xét:

b) \(\Delta AHN\)và \(\Delta CHN\)

c) \(\Delta MBH\)và \(\Delta MAH\)

d) Câu này có 2 cách: chứng minh hình chữ nhật => chiều dài > chiều rộng hay cũng cm hình chữ nhật => song song => cặp góc bằng nhau ở vị trí so le trong hoặc đồng vị => xét bình thường như các câu kia.

Tuy nhiên nên chọn cách 2 vì cách 1 chiều dài > chiều rộng đôi khi không đúng thế. Vì có thể chiều dài nhỏ hơn hoặc bằng chiều rộng

Nếu cm cách 2 thì làm như sau:

Xét tứ giác \(AMHN\)có: \(\hept{\begin{cases}\widehat{HMA}=90\\MAN=90\\HNA=90\end{cases}}\)(gt)

\(\Rightarrow AMHN\)là hình chữ nhật

\(\Rightarrow MH\)// \(AN\)

\(\Rightarrow\widehat{MHA}=\widehat{HAN}\left(slt\right)\)

Sau đó xét \(\Delta MHA\)và \(\Delta HAN\)nhé.

Ps: Nhớ check lại.

7 tháng 3 2017

AH vuông góc vs BC mà