K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 3 2022

`Answer:`

Sửa đề câu a.: Tính tỉ số diện tích hai tam giác ABD và tam giác ACD nhé.

C D H A B

a. `\triangleABD` và `\triangleACD` có chung đường cao hạ từ `A`

\(\Rightarrow\frac{S_{ABD}}{S_{ACD}}=\frac{BD}{CD}=\frac{AB}{AC}=\frac{12}{16}=\frac{3}{4}\)

b. Áp dụng định lý Pytago: `AB^2+AC^2=BC^2<=>12^2+16^2=BC^2<=>BC^2=400<=>BC=20cm`

c. Ta có: `BC=BD+CD=20cm`

Mà `\frac{BD}{CD}=3/4=>\frac{BD}{3}=\frac{CD}{4}=\frac{BD+CD}{3+4}=\frac{20}{7}`\(\Rightarrow\hept{\begin{cases}BD=\frac{60}{7}cm\\CD=\frac{80}{7}cm\end{cases}}\)

d. \(S_{ABC}=\frac{1}{2}.AB.AC=\frac{1}{2}.AH.BC\Rightarrow AH=\frac{12.16}{20}=9,6cm\)

3 tháng 3 2018

Tam giác ABC có chu vi bằng 74cm, AC là cạnh lớn nhất. Đường phân giác của góc A chia cạnh BC thành hai đoạn tỉ lệ với 2:3; đường phân giác của góc C chia cạnh AB thành hai đoạn tỉ lệ với 4:5. Tính độ dài các cạnh của tam giác ABC. 

AB + BC + AC = 74 (*) 
Trong ∆ ABC phân giác AD → AB/AC = DB/DC = 2/3 (AC > AB) 
→ AB = 2/3 . AC (1) , tương tự với phân giác CE ta suy ra 
BC = 4/5 . AC (2) . Thế tất cả vào (*) ta được: 
2/3 . AC + 4/5 . AC + AC = 74 → 37AC/15 = 74 → AC = 30cm 
thế vào (1) và (2) ta được AB = 10cm, BC = 24cm

26 tháng 5 2020

chij vào vndoc á xong rùi kéo xuống nó vẹ cho

24 tháng 5 2020

a, Xét △ABC vuông tại A và △MDC vuông tại M

Có: ∠ACB là góc chung

=> △ABC ᔕ △MDC (g.g)

b, Xét △ABC vuông tại A có: AB2 + AC2 = BC2 (định lý Pytago)

=> 362 + 482 = BC2  => BC2 = 3600 => BC = 60 (cm)

Vì M là trung điểm BC (gt) => MB = MC =  BC : 2 = 60 : 2 = 30 (cm)

Vì △ABC ᔕ △MDC (cmt) \(\Rightarrow\frac{AB}{MD}=\frac{AC}{MC}\) \(\Rightarrow\frac{36}{MD}=\frac{48}{30}\)\(\Rightarrow MD=\frac{36.30}{48}=22,5\) (cm)

và \(\frac{AC}{MC}=\frac{BC}{DC}\)\(\Rightarrow\frac{48}{30}=\frac{60}{DC}\)\(\Rightarrow DC=\frac{30.60}{48}=37,5\) (cm)

c, Xét △BME vuông tại M và △BAC vuông tại A

Có: ∠MBE là góc chung

=> △BME ᔕ △BAC (g.g)

\(\Rightarrow\frac{BM}{AB}=\frac{BE}{BC}\) \(\Rightarrow\frac{30}{36}=\frac{BE}{60}\)\(\Rightarrow BE=\frac{30.60}{36}=50\) (cm)

 Vì M là trung điểm BC (gt) mà ME ⊥ BC (gt)

=> ME là đường trung trực BC

=> EC = BE

Mà BE = 50 (cm)

=> EC = 50 (cm)

e, Ta có: \(\frac{S_{\text{△}MDC}}{S_{\text{△}ABC}}=\frac{\frac{1}{2}.MD.MC}{\frac{1}{2}.AB.AC}=\frac{22,5.30}{36.48}=\frac{675}{1728}=\frac{25}{64}\)

P/s: Sao nhiều câu cùng tính EC vậy? Pls, không làm loãng câu hỏi

Bài làm 

@Mấy bạn bên dưới: nghiêm cấm không trả lời linh tinh, nhất bạn luffy toán học, bạn rảnh đến nỗi cũng hùa theo họ mà spam linh tinh à. 

a) Xét tam giác ABC và tam giác MDC có:

\(\widehat{BAC}=\widehat{DMC}=90^0\)

\(\widehat{BCA}\)chung

=> Tam giác ABC ~ tam giác MDC ( g - g )

b) Xét tam giác ABC vuông tại A có:

Theo pytago có:

BC2 = AB2 + AC2 

hay BC2 = 362 + 482 

hay BC2 = 1296 + 2304

=> BC2 = 3600

=> BC = 60 ( cm )

Mà M là trung điểm BC
=> BM = MC = BC/2 = 60/2 = 30 ( cm )

Vì tam giác ABC ~ tam giác MDC ( cmt )

=> \(\frac{AB}{MD}=\frac{BC}{DC}=\frac{AC}{MC}\)

hay \(\frac{36}{MD}=\frac{60}{DC}=\frac{48}{30}\)

=> \(MD=\frac{36.30}{48}=22,5\left(cm\right)\)

=> \(DC=\frac{60.30}{48}=37,5\left(cm\right)\)

c) Xét tam giác MBE và tam giác ABC có:

\(\widehat{BME}=\widehat{BAC}=90^0\)

\(\widehat{ABC}\)chung

=> Tam giác MBE ~ tam giác ABC ( g - g )

=> \(\frac{ME}{AC}=\frac{BM}{AB}\)

hay \(\frac{ME}{48}=\frac{30}{36}\Rightarrow ME=\frac{48.30}{36}=40\left(cm\right)\)

Xét tam giác MEC vuông tại M có:

EC2 = MC2 + ME2 

hay EC2 = 302 + 402 

=> EC2 = 900 + 1600

=> EC2 = 50 ( cm )

a) Vì tam giác MDC ~ Tam giác ABC

=> \(\frac{S_{\Delta MDC}}{S_{\Delta ABC}}=\left(\frac{MD}{AB}\right)^2=\left(\frac{22,5}{36}\right)^2=\left(\frac{5}{8}\right)^2=\frac{25}{36}\)

Câu c, d và câu đ giống nhau ? 

6 tháng 4 2018

(tự vẽ hình)

a) Xét tam giác HBA và ABC có 

AHB = BAC = 90

B chung

=> HBA đồng dạng ABC

b) theo pi ta go

BC2 = AB+AC2

BC = \(\sqrt{369}\)