K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 7 2018

A B C E D 1 2 1 2

a, Ta có: góc ABC=góc ACB (t/g ABC cân tại A)

=> góc ABC/2 = góc ACB/2

=>góc B1 = góc B2 = góc C1 = góc C2 

Xét t/g ADB và t/g AEC có:

góc B1 = góc C1 (cmt)

AB=AC (t/g ABC cân tại A)

góc A chung

=>t/g ADB = t/g AEC (g.c.g)

b, Vì t/g ADB = t/g AEC (câu a) => BD=CE (*), AE=AD

=> t/g AED cân tại A

=> góc AED = góc ADE = \(\frac{180^o-\widehat{A}}{2}\)  (1)

Mà góc ABC=góc ACB = \(\frac{180^o-\widehat{A}}{2}\) (2)

Từ (1) và (2) => góc AED = góc ABC 

Mà góc AED và góc ABC là cặp góc đồng vị 

=> ED // BC (**)

Từ (*) và (**) => BEDC là hình thang cân

c, Vì BEDC là hình thang cân => BE=DC (3)

Từ (**) => góc EDB = góc B2 (so le trong)

Mà góc B1 = góc B2 (gt)

=>góc EDB = góc B1

=>t/g BED cân tại E

=>BE=ED (4)

Từ (3),(4) => BE=ED=DC

P/s: hình chỉ mang tính chất minh họa :v

4 tháng 7 2018

ai  giúp mình câu e với ạ

Xét △BDE, có :

N là tđ của DE (gt)

I là tđ của BE (gt)

⇒ NI là đường trung bình của △BDE

⇒NI=BD/2 (tính chất)

Xét △DEC, có :

N là tđ của DE (gt)

K là tđ của CD (gt)

⇒ NK là đường trung bình của △DEC

⇒NK=CE/2 (tính chất)

Xét △BEC, có :

M là tđ của BC (gt)

I là tđ của BE (gt)

⇒ MI là đường trung bình của △BEC

⇒MI=CE/2 (tính chất)

Xét △BDC, có :

M là tđ của BC (gt)

K là tđ của CD (gt)

⇒ MK là đường trung bình của △BDC

⇒MK=BD/2 (tính chất)

Có:

NI=BD/2 (cmt)

NK=CE/2 (cmt)

MI=CE/2 (cmt)

MK=BD/2 (cmt)

BD=CE(gt)

⇒NI=NK=MI=MK

Xét tứ giác MINK, có :

NI=NK=MI=MK (cmt)

⇒Tứ giác MINK là hình thoi (DHNB)

HT

Xét tam giác BDE có :

I là trung điểm của DE ( gt )

M là trung điểm của BE ( gt )

=> IM là đường TB

=> IM = 1/2 BD ( tính chất đường TB )

CMTT : ta có NK = 1/2 BD

IN = 1/2 CE

NK = 1/2 CE

Mà BD = CE ( gt )

=> IM = MK = IN = NK

=> Tứ giác IMKN là hình thoi ( tứ giác có 4 cạnh bằng nhau )

=> IK ⊥ MN ( tính chất hình thoi )

Bài 1 :Cho ABC nhọn (AB < AC). Gọi M là trung điểm của BC. Trên tia AM lấy đi ểm N sao cho M là trung điểm của AN.a/. Ch/m : ΔAMB = ΔNMCb/. Vẽ CD \bot AB (D\in AB). So sánh góc ABC và góc BCN. Tính góc DCN.c/. Vẽ AH \bot BC (H \in BC), trên tia đối của tia HA lấy điểm I sao cho HI = HA.Ch/m : BI = CN.BÀI 2 :Vẽ góc nhọn xAy. Trên tia Ax lấy hai điểm B và C (B nằm giữa A và C). Trên tia Ay lấy hai điểm D và E sao cho AD = AB; AE...
Đọc tiếp

Bài 1 :
Cho ABC nhọn (AB < AC). Gọi M là trung điểm của BC. Trên tia AM lấy đi ểm N sao cho M là trung điểm của AN.
a/. Ch/m : ΔAMB = ΔNMC

b/. Vẽ CD \bot AB (D\in AB). So sánh góc ABC và góc BCN. Tính góc DCN.

c/. Vẽ AH \bot BC (H \in BC), trên tia đối của tia HA lấy điểm I sao cho HI = HA.

Ch/m : BI = CN.

BÀI 2 :

Vẽ góc nhọn xAy. Trên tia Ax lấy hai điểm B và C (B nằm giữa A và C). Trên tia Ay lấy hai điểm D và E sao cho AD = AB; AE = AC

a) Chứng minh BE = DC

b) Gọi O là giao điểm BE và DC. Chứng minh tam giác OBC bằng tam giác ODE.

c) Vẽ trung điểm M của CE. Chứng minh AM là đường trung trực của CE.

Bài 3

Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :

a) Tam giác AIB bằng tam giác CID.

b) AD = BC v à AD // BC.

Bài 4.

Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :

a) Tam giác AIB bằng tam giác CID.

b) AD = BC v à AD // BC.

Bài 4.

Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :

a) Tam giác AIB bằng tam giác CID.

b) AD = BC v à AD // BC.

BÀI 4

Cho tam giác ABC có góc A =350 . Đường thẳng AH vuông góc với BC tại H. Trên đường vuông góc với BC tại B lấy điểm D không cùng nửa mặt phẳng bờ BC với điểm A sao cho AH = BD.

a) Chứng minh ΔAHB = ΔDBH.

b) Chứng minh AB//HD.

c) Gọi O là giao điểm của AD và BC. Chứng minh O là trung điểm của BH.

d) Tính góc ACB , biết góc BDH= 350 .

Bài 5 :

Cho tam giác ABC cân tại A và có \widehat{A}=50^0  .

Tính \widehat{B} và \widehat{C}
Lấy D thuộc AB, E thuộc AC sao cho AD = AE. Chứng minh : DE // BC.
Bài 6 :

Cho tam giác ABC cân tại A. Lấy D thuộc AC, E thuộc AB sao cho AD = AE.

Chứng minh : DB = EC.
Gọi O là giao điểm của BD và EC. Chứng minh : tam giác OBC và ODE là tam giác cân.
Chứng minh rằng : DE // BC.
Bài 7

Cho tam giác ABC. Tia phân giác của góc C cắt AB tại D. trên tia đối của tia CA lấy điểm E sao cho CE = CB.

Chứng minh : CD // EB.
Tia phân giác của góc E cắt CD tại F. vẽ CK vuông góc EF tại K. chứng minh : CK Tia phân giác của góc ECF.
Bài 8 :

Cho tam giác ABC vuông tại A có \widehat{B}=60^0 . Vẽ Cx vuông góc BC, trên tia Cx lấy điểm E sao cho CE = CA (CE , CA nằm cùng phía đối BC). trên tia đối của tia BC lấy điểm F sao cho BF = BA. Chứng minh :

Tam giác ACE đều.
A, E, F thẳng hàng.

1

Bài 3: 

a: Xét ΔAIB và ΔCID có

IA=IC

góc AIB=góc CID

IB=ID

Do đó: ΔAIB=ΔCID

b: Xét tứ giác ABCD có

I là trung điểm chung của AC và BD

nên ABCD là hình bình hành

Suy ra: AD//BC va AD=BC

Bài 6: 

a: Xét ΔADB và ΔAEC có

AD=AE
góc A chung

AB=AC

Do đó: ΔADB=ΔAEC
SUy ra: BD=CE
b: Xét ΔEBC và ΔDCB có

EB=DC

BC chung

EC=BD

Do đó: ΔEBC=ΔDCB

Suy ra: góc OBC=góc OCB

=>ΔOBC cân tại O

=>OB=OC

=>OE=OD

=>ΔOED cân tại O

c: Xét ΔABC có AE/AB=AD/AC
nên ED//BC