K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 9 2018

(Bạn tự vẽ hình giùm)

a/ Ta có \(\Delta ABC\)cân tại A

=> Đường trung tuyến AI cũng là đường trung trực

Ta lại có A \(\in\)AI (gt)

=> AD = AE

nên \(\Delta ADE\)cân tại A

=> \(\widehat{ADE}=\frac{180^o-\widehat{A}}{2}\)

và \(\widehat{B}=\frac{180^o-\widehat{A}}{2}\)(\(\Delta ABC\)cân tại A)

=> \(\widehat{ADE}=\widehat{B}\)ở vị trí đồng vị

=> DE // BC

nên BDEC là hình thang

và \(\widehat{B}=\widehat{C}\)(\(\Delta ABC\)cân tại A)

=> BDEC là hình thang cân (đpcm)

a)Vì I là trung điểm của BC

\(\Rightarrow\)AI là trung tuyến của \(\Delta ABC\)cân tại A

\(\Rightarrow AI\)là phân giác của \(\Delta ABC\)

\(\Rightarrow\widehat{BAM}=\widehat{CAM}\)

Vì \(\Delta ABC\)cân tại A \(\Rightarrow AB=AC\)

Xét \(\Delta BAM\)và \(\Delta CAM\),có:

\(\hept{\begin{cases}AB=AC\\\widehat{BAM}=\widehat{CAM}\\AM:chung\end{cases}}\)

\(\Rightarrow\Delta BAM=\Delta CAM\left(c.g.c\right)\)

\(\Rightarrow\widehat{ABM}=\widehat{ACM}\)(2 góc tương ứng)

Xét \(\Delta ABE\)và \(\Delta ACD\),có:

\(\hept{\begin{cases}\widehat{ABM}=\widehat{ACM}\\AB=AC\\\widehat{BAC}:chung\end{cases}}\)

\(\Rightarrow\Delta ABE=\Delta ACD\left(g.c.g\right)\)

\(\Rightarrow AE=AD\)(2 cạnh tương ứng)

\(\Rightarrow\Delta ADE\)cân tại A

\(\Rightarrow\widehat{ADE}=\frac{180^0-\widehat{BAC}}{2}\)

mà \(\Delta ABC\)cân tại A \(\Rightarrow\widehat{ABC}=\frac{180^0-\widehat{BAC}}{2}\)

\(\Rightarrow\widehat{ADE}=\widehat{ABC}\)

Mặt khác : \(\widehat{ADE}\)và \(\widehat{ABC}\)là 2 góc ở vị trí đồng vị

\(\Rightarrow DE//BC\)

\(\Rightarrow BDEC\)là hình thang

Ta có : \(\widehat{ABC}=\widehat{ACB}\)(do \(\Delta ABC\)cân tại A)

\(\Rightarrow BDEC\)là hình thang cân

b)Vì BDEC là hình thang cân \(\Rightarrow BD=CE\)

Ta có :BD=CE \(\Leftrightarrow\Delta BDE\)cân tại B

\(\Leftrightarrow\widehat{DBE}=\widehat{DEB}\)

mà \(\widehat{DEB}=\widehat{EBC}\)(do DE//BC)

\(\Leftrightarrow\widehat{DBE}=\widehat{EBC}\)

\(\Leftrightarrow BE\)là phân giác của \(\widehat{ABC}\)

hay \(BM\)là phân giác của \(\widehat{ABC}\)

Vậy khi M là 1 điểm nằm trên AI sao cho BM là phân giác của \(\widehat{ABC}\)thì BD=DE=CE

31 tháng 12 2021

a: Xét ΔABC có 

\(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)

Do đó: DE//BC

hay BDEC là hình thang

mà \(\widehat{B}=\widehat{C}\)

nên BDEC là hình thang cân

14 tháng 7 2018

A B C H K D M N E

a) Ta có  \(\Delta ABC\)cân tại A  \(\Rightarrow\widehat{ABC}=\frac{180^o-\widehat{BAC}}{2}\left(1\right)\)

Do BD là phân giác  \(\widehat{ABC}\)\(\Rightarrow\widehat{ABD}=\widehat{DBC}\)

          CE là phân giác  \(\widehat{ACB}\)\(\Rightarrow\widehat{ACE}=\widehat{ECB}\)

Mà \(\Delta ABC\)cân  \(\Rightarrow\widehat{ABC}=\widehat{ACB}\)

Suy ra  \(\widehat{ABD}=\widehat{DBC}=\widehat{ACE}=\widehat{ECB}\)

Xét  \(\Delta ABD=\Delta ACE\left(g-c-g\right)\)( tự xét nha :)))

\(\Rightarrow AD=AE\)\(\Rightarrow\Delta AED\)cân tại A 

\(\Rightarrow\widehat{AED}=\frac{180^o-\widehat{BAC}}{2}\left(2\right)\)

Từ (1) và (2)  \(\Rightarrow\widehat{AED}=\widehat{ABC}\)

Mà hai góc đó ở vị trí đồng vị

\(\Rightarrow ED//BC\)

Lại có :  \(\widehat{ABC}=\widehat{ACB}\)

Suy ra : BEDC là hình thang cân (3)

Ta có :  \(ED//BC\Rightarrow\widehat{EDB}=\widehat{DBC}\)( so le trong )

Mà  \(\widehat{EBD}=\widehat{DBC}\)

Suy ra  \(\widehat{EDB}=\widehat{EBD}\)\(\Rightarrow\Delta BED\)cân tại E 

\(\Rightarrow EB=ED\left(4\right)\)

Từ (3) và (4)  \(\Rightarrow\)BEDC là hình thang cân có cạnh bên bằng đáy nhỏ -_-

b) Xét  \(\Delta ABH=\Delta ACK\left(ch-gn\right)\)( tự xét )

\(\Rightarrow AK=AH\)\(\Rightarrow\Delta AKH\)cân tại A

\(\Rightarrow\widehat{AKH}=\frac{180^o-\widehat{BAC}}{2}\left(5\right)\)

Từ (1) và (5)  \(\Rightarrow\widehat{AKH}=\widehat{ABC}\)

Mà hai góc trên ở vị trí đồng vị 

Suy ra : KH // BC

Lại có  : \(\widehat{ABC}=\widehat{ACB}\)

Suy ra : BKHC là hình thang cân 

c) Do BM là trung tuyến  \(\Rightarrow AM=\frac{1}{2}AC\)

          CN là trung tuyến  \(\Rightarrow AN=\frac{1}{2}AB\)

Mà AB = AC  \(\Rightarrow AN=AM\)

\(\Rightarrow\Delta AMN\)cân tại A  \(\Rightarrow\widehat{ANM}=\frac{180^o-\widehat{BAC}}{2}\left(6\right)\)

Từ (1) và (6)  \(\Rightarrow\widehat{ANM}=\widehat{ABC}\)

Mà hai góc trên ở vị trí đồng vị 

\(\Rightarrow MN//BC\)

Lại có :  \(\widehat{ABC}=\widehat{ACB}\)

Suy ra BNMC là hình thang cân 

Vậy ...