\(\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 7 2019

75 B A C H

Vì tam giác ABC cân tại A nên:

\(\widehat{ABC}=\widehat{ACB}=75^o\)

Áp dụng tính chất tổng ba góc trong tam giác HBC ta có:

\(\widehat{BHC}+\widehat{ACB}+\widehat{HBC}=180^o\)

\(90^o+75^0+\widehat{HBC}=180^o\)

\(165^o+\widehat{HBC}=180^o\)

\(\widehat{HBC}=180^o-165^o=15^o\)

Ta lại có: \(\widehat{ABC}=\widehat{HBA}+\widehat{HBC}\)

\(\Rightarrow\widehat{HBA}=\widehat{ABC}-\widehat{HBC}=75^o-15^o=60^o\)

Mặt khác: \(15^o=\frac{1}{4}60^o\)

Vậy nên \(\widehat{HBC}=\frac{1}{4}\widehat{HBA}\)

20 tháng 2 2018

Hình như đề bài sai thì phải. Theo đề bài trên thì BH trùng với AB; CK trùng với AC

20 tháng 2 2018

đề bài ko sai đâu

19 tháng 4 2016

a)

xét tam giác ABM và tam giác ACM có:
AB=AC(gt)

MB=MC(gt)

B=C(gt)

suy ra tam giác ABM=ACM(c.g.c)

b)

xét 2 tam giác vuông AHC và AKB có:

AB=AC(gt)

A(chung)
suy ra tam giác AHB=AKB(CH-GN)

suy ra AH=AK

AB=AC

BH=AB=AH

CK=AC-AK

từ tất cả nh điều trên suy ra BH=CK

c)

xét tam giác KBC và tma giác HCB có:
CB(chugn)
HB=KC(theo câu b)
B=C(gt)

suy ra tam giác KBC=ACB(c.g.c)

suy ra KBC=HCB suy ra tam giác IBC cân tại I

19 tháng 4 2016

A B C H K I

b a c h e d

a) có tam giác abc cân tại a mà ah là phân giác của bac => ah cũng là đường trung truyến => bh=hc=bc/2=8/2=4cm

xét tam giác vuông ahc có \(AC^2=AH^2+HC^2=3^2+4^2=9+15=25\Rightarrow AC=5CM\)

B) xét tam giác vuông aeh và tam giác vuông adh 

có ah chung ; aeh= dah ( vì tam giác abc cân mà ah là đường cao => ah là phân giác )

=> tam giác vuông aeh = tam giác vuông adh  ( trường hợp cạnh huyền - góc nhọn )  => ae =ad => dpcm

c) có ae = ad ( câu a ) => tam giác aed cân => aed= aed= \(\frac{180^0-A}{2}\) (1)

có tam giác abc cân a ( đề bài ) => abc = acb = \(\frac{180^o-A}{2}\)(2) 

từ (1) và (2)  => aed = abc = ade=acb hay aed=abc mà 2 góc này ở vị trí so le trong

=. ed//bc 

7 tháng 1 2020

A B C D H A' x x/2

Kẻ đường cao AH ; Vì \(\Delta\)ABC cân 

=> H là trung điểm BC  

Xét \(\Delta\)ABC cân tại A có ^A = 120\(^o\)

=> ^ABH = ^ACH = 30\(^o\)

=> ^BAH = 60 \(^o\)

Lấy A' đối xứng với A qua H; BH vuông góc AA'; H là trung điểm AA'

=> \(\Delta\)ABA' cân tại B mà  ^BAA' = ^BAH = 60\(^o\)

=> \(\Delta\)ABA'  đều .

Đặt: AB = x => AA' = x => AH = x/2

+) \(\Delta\)ABH vuông tại H => BH\(^2\)= AB\(^2\)- AH\(^2\)\(x^2-\frac{x^2}{4}=\frac{3x^2}{4}\)

=> \(BH=\frac{\sqrt{3}x}{2}\)

=> \(BC=2BH=\sqrt{3}x=\sqrt{3}AB\)

( Như vậy chúng ta có nhận xét: Cho \(\Delta\)ABC cân tại A; ^A = 120\(^o\)=> \(BC=\sqrt{3}AB\))

=> \(AC=AB=\frac{BC}{\sqrt{3}}=\frac{6}{\sqrt{3}}\)

+) Xét \(\Delta\)ABD vuông tại A có: ^ABD = ^ABH  = 30 \(^o\)=> ^ADB = 60\(^o\)

=> ^ADC = 180\(^o\)- ^ADB = 180\(^o\)- 60 \(^o\)= 120\(^o\) 

Mà ^BAC = 120\(^o\); ^BAD = 90\(^o\)

=> ^DAC = 120\(^o\)- 90 \(^o\)= 30\(^o\)

+) Xét \(\Delta\)DAC có: ^DAC = 30\(^o\); ^ADC = 120\(^o\) => ^DCA = 30\(^o\)

=> \(\Delta\)DAC cân tại D và có: ^ADC = 120\(^o\). Theo nhận xét in đậm ở trên: \(AC=\sqrt{3}.DC\)

=> \(DC=\frac{AC}{\sqrt{3}}=\frac{\frac{6}{\sqrt{3}}}{\sqrt{3}}=\frac{6}{3}=2\)

=> \(BD=BC-DC=6-2=4cm\)

14 tháng 2 2016

moi hok lop 6