Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình như đề bài sai thì phải. Theo đề bài trên thì BH trùng với AB; CK trùng với AC
a)
xét tam giác ABM và tam giác ACM có:
AB=AC(gt)
MB=MC(gt)
B=C(gt)
suy ra tam giác ABM=ACM(c.g.c)
b)
xét 2 tam giác vuông AHC và AKB có:
AB=AC(gt)
A(chung)
suy ra tam giác AHB=AKB(CH-GN)
suy ra AH=AK
AB=AC
BH=AB=AH
CK=AC-AK
từ tất cả nh điều trên suy ra BH=CK
c)
xét tam giác KBC và tma giác HCB có:
CB(chugn)
HB=KC(theo câu b)
B=C(gt)
suy ra tam giác KBC=ACB(c.g.c)
suy ra KBC=HCB suy ra tam giác IBC cân tại I
b a c h e d
a) có tam giác abc cân tại a mà ah là phân giác của bac => ah cũng là đường trung truyến => bh=hc=bc/2=8/2=4cm
xét tam giác vuông ahc có \(AC^2=AH^2+HC^2=3^2+4^2=9+15=25\Rightarrow AC=5CM\)
B) xét tam giác vuông aeh và tam giác vuông adh
có ah chung ; aeh= dah ( vì tam giác abc cân mà ah là đường cao => ah là phân giác )
=> tam giác vuông aeh = tam giác vuông adh ( trường hợp cạnh huyền - góc nhọn ) => ae =ad => dpcm
c) có ae = ad ( câu a ) => tam giác aed cân => aed= aed= \(\frac{180^0-A}{2}\) (1)
có tam giác abc cân a ( đề bài ) => abc = acb = \(\frac{180^o-A}{2}\)(2)
từ (1) và (2) => aed = abc = ade=acb hay aed=abc mà 2 góc này ở vị trí so le trong
=. ed//bc
A B C D H A' x x/2
Kẻ đường cao AH ; Vì \(\Delta\)ABC cân
=> H là trung điểm BC
Xét \(\Delta\)ABC cân tại A có ^A = 120\(^o\)
=> ^ABH = ^ACH = 30\(^o\)
=> ^BAH = 60 \(^o\)
Lấy A' đối xứng với A qua H; BH vuông góc AA'; H là trung điểm AA'
=> \(\Delta\)ABA' cân tại B mà ^BAA' = ^BAH = 60\(^o\)
=> \(\Delta\)ABA' đều .
Đặt: AB = x => AA' = x => AH = x/2
+) \(\Delta\)ABH vuông tại H => BH\(^2\)= AB\(^2\)- AH\(^2\)= \(x^2-\frac{x^2}{4}=\frac{3x^2}{4}\)
=> \(BH=\frac{\sqrt{3}x}{2}\)
=> \(BC=2BH=\sqrt{3}x=\sqrt{3}AB\)
( Như vậy chúng ta có nhận xét: Cho \(\Delta\)ABC cân tại A; ^A = 120\(^o\)=> \(BC=\sqrt{3}AB\))
=> \(AC=AB=\frac{BC}{\sqrt{3}}=\frac{6}{\sqrt{3}}\)
+) Xét \(\Delta\)ABD vuông tại A có: ^ABD = ^ABH = 30 \(^o\)=> ^ADB = 60\(^o\)
=> ^ADC = 180\(^o\)- ^ADB = 180\(^o\)- 60 \(^o\)= 120\(^o\)
Mà ^BAC = 120\(^o\); ^BAD = 90\(^o\)
=> ^DAC = 120\(^o\)- 90 \(^o\)= 30\(^o\)
+) Xét \(\Delta\)DAC có: ^DAC = 30\(^o\); ^ADC = 120\(^o\) => ^DCA = 30\(^o\)
=> \(\Delta\)DAC cân tại D và có: ^ADC = 120\(^o\). Theo nhận xét in đậm ở trên: \(AC=\sqrt{3}.DC\)
=> \(DC=\frac{AC}{\sqrt{3}}=\frac{\frac{6}{\sqrt{3}}}{\sqrt{3}}=\frac{6}{3}=2\)
=> \(BD=BC-DC=6-2=4cm\)
75 B A C H
Vì tam giác ABC cân tại A nên:
\(\widehat{ABC}=\widehat{ACB}=75^o\)
Áp dụng tính chất tổng ba góc trong tam giác HBC ta có:
\(\widehat{BHC}+\widehat{ACB}+\widehat{HBC}=180^o\)
\(90^o+75^0+\widehat{HBC}=180^o\)
\(165^o+\widehat{HBC}=180^o\)
\(\widehat{HBC}=180^o-165^o=15^o\)
Ta lại có: \(\widehat{ABC}=\widehat{HBA}+\widehat{HBC}\)
\(\Rightarrow\widehat{HBA}=\widehat{ABC}-\widehat{HBC}=75^o-15^o=60^o\)
Mặt khác: \(15^o=\frac{1}{4}60^o\)
Vậy nên \(\widehat{HBC}=\frac{1}{4}\widehat{HBA}\)