Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: ΔABC cân tại A
mà AH là đường cao
nên H là trung điểm của BC và AH là phân giác của góc BAC
=>góc BAH=góc CAH
b: \(BH=\sqrt{5^2-4^2}=3\left(cm\right)\)
c: Xét ΔADH vuông tại D và ΔAEH vuông tại E có
AH chung
góc DAH=góc EAH
Do đó: ΔADH=ΔAEH
=>AD=AE
=>ΔADE cân tại A
a, Ta có ∆ABC cân ở A(gt)
AH\(\perp\) BC=>AH là đường cao
(1)=>AH đồng thời là trung tuyến=>HB=HC
(2)=>AH đồng thời là phân giác=>góc BAH=góc CAH
b, Áp dụng định lí pyta go cho ∆ABH ta có
AB2=AH2+BH2 =>52=42+HB2=>HB=√52--42=3
d, Xét ∆DHB và ∆EHC có
Góc HDB=góc HEC =90°(HD\(\perp\) AB, HE vuông góc ACgt)
Góc B=góc C ( tam giác ABC cân tai A gt)
HB =HC (cmt)
=> ∆DHB=∆EHC(ch-cgv)=>HD=HE=>∆HDE cân tại H
Bài 1: (bạn tự vẽ hình vì hình cũng dễ)
Ta có: AB = AH + BH = 1 + 4 = 5 (cm)
Vì tam giác ABC cân tại B => BA = BC => BC = 5 (cm)
Xét tam giác BCH vuông tại H có:
\(HB^2+CH^2=BC^2\left(pytago\right)\)
\(4^2+CH^2=5^2\)
\(16+CH^2=25\)
\(\Rightarrow CH^2=25-16=9\)
\(\Rightarrow CH=\sqrt{9}=3\left(cm\right)\)
Tới đây xét tiếp pytago với tam giác ACH là ra AC nhé
Bài 2: Sử dụng pytago với tam giác ABH => AH
Sử dụng pytago với ACH => AC
a) Xét tam giác ABH và tam giác ACH có:
\(\widehat{AHB}=\widehat{AHC}=90^0\) (gt)
\(AB=AC\) (Do tam giác ABC cân tại A)
\(AH\) chung
\(\Rightarrow\Delta ABH=\Delta ACH\) (ch-cgv) \(\Rightarrow BH=CH\) (2 cạnh tương ứng)
b) Do \(\Delta ABH=\Delta ACH\Rightarrow\widehat{BAH}=\widehat{CAH}\) (2 góc tương ứng)
c) Do \(BH=CH\Rightarrow BH=CH=\dfrac{1}{2}BC=4\left(cm\right)\)
Áp dụng ĐL Pytago ta có: \(AB^2=AH^2+BH^2\)
\(5^2=AH^2+4^2\Rightarrow AH^2=5^2-4^2=9\Rightarrow AH=3\left(cm\right)\)
A B C H
xét hai tam giác vuông ABH và ACH có :
AH cạnh chung ; AB = AC ( tam giác ABC cân tại A ) => tam giác ABH = tam giác ACH ( ch-cgv )
=> BH=CH cạnh tương ứng ; BAH = CAH góc tương ứng
theo pitago thì : BH = căn 4^2 + 5^2 = căn 31
A B C H
a,Xét hai tam giác vuông ABH và tam giác vuông ACH có :
góc AHB = góc AHC = 90độ
cạnh AH chung
AB = AC ( = 5cm )
Do đó : tam giác ABH = tam giác ACH ( cạnh huyền - cạnh góc vuông )
\(\Rightarrow\)BH = CH ( cạnh tương ứng )
và góc BAH = góc CAH ( 2 góc tương ứng )
b,Áp dụng định lí Py-ta-go vào tam giác ABH vuông tại H , ta có :
\(AB^2=AH^2+BH^2\)
\(\Rightarrow BH^2=AB^2-AH^2\)
\(\Rightarrow BH^2=5^2-4^2\)
\(\Rightarrow BH^2=9\)
\(\Rightarrow BH=3cm\)
Vậy BH = 3cm .
Chúc bạn học tốt .
Đầu tiên bạn vẽ hình trc
- Xét tam giác AHB vuông góc tại H, theo định lý py-ta-go ta có:
AB2=AH2+HB2 hay AB2=122+52=169↔AB=\(\sqrt{169}\)=13 cm
- xét ΔAHC vuông góc tại H, theo đl py-ta-go ta có:
HC2=AC2 - AH2 hay HC2= 152-122=81↔HC=\(\sqrt{81}\)= 9 cm
vậy AB= 13cm và HC= 9cm
A B C H 7 cm 2 cm 2 cm
Ta có: AC = AH + HC = 7 + 2 = 9 (cm)
Vì AB = AC => AB = 9 cm
Áp dụng định lí Pi - ta - go vào t/giác AHB vuông tại H, ta có:
AB2 = AH2 + BH2
=> BH2 = AB2 - AH2 = 92 - 72 = 32
Áp dụng định lí Pi - ta - go vào t/giác AHC vuông tại H, ta có:
BC2 = BH2 + HC2 = 32 + 22 = 36
=> BC = 6 (cm)
*Tính BH
Áp dụng định lí pytago vào \(\Delta\)ABH vuông tại H, ta được
\(AB^2=AH^2+BH^2\)
hay \(BH^2=AB^2-AH^2=5^2-4^2=9\)
\(\Rightarrow BH=\sqrt{9}=3cm\)
Vậy: BH=3cm
*Tính HC
Ta có: AB=AC(\(\Delta\)ABC cân tại A)
mà AB=5cm(gt)
nên AC=5cm
Ta có: AH+HC=AC(do A,H,C thẳng hàng)
hay HC=AC-AH=5-4=1cm
Vậy: HC=1cm
*Tính BC
Áp dụng định lí pytago vào \(\Delta\)HBC vuông tại H, ta được
\(BC^2=BH^2+HC^2\)
hay \(BC^2=3^2+1^2=10\)
\(\Rightarrow BC=\sqrt{10}cm\)
Vậy: \(BC=\sqrt{10}cm\)
Bạn ơi tớ cứ thấy sai sai