K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
8 tháng 3 2021

\(C=180^0-\left(A+B\right)=105^0\)

\(\dfrac{a}{sinA}=\dfrac{b}{sinB}\Rightarrow a=\dfrac{b.sinA}{sinB}=\dfrac{20.sin35^0}{sin40^0}\approx17,8\left(cm\right)\)

\(\dfrac{b}{sinB}=\dfrac{c}{sinC}\Rightarrow c=\dfrac{b.sinC}{sinB}\approx30\left(cm\right)\)

8 tháng 3 2021

Giúp đỡ ạ

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

Áp dụng định lí cosin trong tam giác ABC

\(\begin{array}{l}{a^2} = {b^2} + {c^2} - \,2b\,c.\cos A\quad (1)\\{b^2} = {a^2} + {c^2} - \,2a\,c.\cos B\quad (2)\end{array}\)

(trong đó: AB = c, BC = a và AC = b)

Ta được:  \(B{C^2} = {a^2} = {8^2} + {5^2} - 2.8.5.\cos {45^o} = 89 - 40\sqrt 2 \)\( \Rightarrow BC \approx 5,7\)

Từ (2) suy ra \(\cos B = \frac{{{a^2} + {c^2} - {b^2}\,}}{{2a\,c}}\);

Mà: a = BC =5,7; b =AC = 8; c =AB =5.

\( \Rightarrow \cos B \approx \frac{{ - 217}}{{1900}} \Rightarrow \widehat B \approx {97^o} \Rightarrow \widehat C \approx {38^o}\)

Vậy tam giác ABC có BC = 5,7, \(\widehat B = {97^o},\widehat C = {38^o}\)

24 tháng 9 2023

Tham khảo:

Áp dụng định lí sin cho tam giác ABC ta có:

\(\dfrac{a}{{\sin A}} = \dfrac{b}{{\sin B}} = \dfrac{c}{{\sin C}} = 2R\)

\(\begin{array}{l} \Rightarrow \sin C = \frac{{c.\sin B}}{b} = \frac{{5.\sin {{80}^o}}}{8} \approx 0,6155\\ \Leftrightarrow \widehat C \approx {38^o}\end{array}\)

Lại có: \(\widehat A = {180^o} - \widehat B - \widehat C = {180^o} - {80^o} - {38^o} = {62^o}\)

Theo định lí sin, ta suy ra \(a = \sin A.\dfrac{b}{{\sin B}} = \sin {62^o}\dfrac{8}{{\sin {{80}^o}}} \approx 7,17\)

Và \(2R = \dfrac{b}{{\sin B}} \Rightarrow R = \dfrac{b}{{2\sin B}} = \dfrac{8}{{2\sin {{80}^o}}} \approx 4,062.\)

Vậy tam giác ABC có \(\widehat A = {62^o}\); \(\widehat C \approx {38^o}\); \(a \approx 7,17\) và \(R \approx 4,062.\)

26 tháng 12 2022

Ta có: \(\widehat{C}=180^0-\left(\widehat{A}+\widehat{B}\right)=180^0-\left(40^0+60^0\right)=80^0\)

Áp dụng định lý sin vào △ABC có:

\(\dfrac{BC}{\sin A}=\dfrac{AB}{\sin C}\) 

\(\Rightarrow BC=\dfrac{AB.\sin A}{\sin C}=\dfrac{5.\sin40}{\sin60}\approx3,26\)

25 tháng 9 2023

Tham khảo:

Đặt \(AB = c,AC = b,BC = a.\)

Ta có: \(a = 152;\widehat A = {180^o} - ({79^o} + {61^o}) = {40^o}\)

Áp dụng định lí sin, ta có:

\(\frac{a}{{\sin A}} = \frac{b}{{\sin B}} = \frac{c}{{\sin C}} = 2R\)

Suy ra:

\(\begin{array}{l}AC = b = \frac{{a.\sin B}}{{\sin A}} = \frac{{152.\sin {{79}^o}}}{{\sin {{40}^o}}} \approx 232,13\\AB = c = \frac{{a.\sin C}}{{\sin A}} = \frac{{152.\sin {{61}^o}}}{{\sin {{40}^o}}} \approx 206,82\\R = \frac{a}{{2\sin A}} = \frac{{152}}{{2\sin {{40}^o}}} \approx 118,235\end{array}\)

20 tháng 1 2017

Chọn D.

Theo định lí cosin ta có:

AB2 = BC2 + AC2 – 2.BC.AC.cos

196 = BC2 + AC2 – 2.BC.AC.cos1200

196 = BC2 + AC2 + BC.AC (1)

Ta lại có: BC + AC = 16 AC = 16 – BC thay vào (1), ta được:

196 = BC2 + (16 – BC)2 + BC(16 – BC)

BC2 – 16BC + 60 = 0 

* Với BC = 10 AC = 6

* Với BC = 6 AC = 10

Vậy: BC = 10 và AC = 6 hoặc BC = 6 và AC = 10.

27 tháng 10 2023

a: Xét ΔABC có \(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)

=>\(\widehat{C}=180^0-60^0-45^0=75^0\)

Xét ΔABC có \(\dfrac{BC}{sinA}=\dfrac{AC}{sinB}=\dfrac{AB}{sinC}\)

=>\(\dfrac{BC}{sin60}=\dfrac{4}{sin45}=\dfrac{AB}{sin75}\)

=>\(BC=2\sqrt{6};AB=2+2\sqrt{3}\)

b: Xét ΔABC có

\(\dfrac{BC}{sinA}=2R\)

=>\(2R=6:sin60=4\sqrt{3}\)

=>\(R=2\sqrt{3}\)

29 tháng 6 2019

a) Ta có:

Giải bài 6 trang 59 sgk Hình học 10 | Để học tốt Toán 10

Vậy tam giác ABC có góc C tù.

b) Ta có:

Giải bài 6 trang 59 sgk Hình học 10 | Để học tốt Toán 10

NV
26 tháng 12 2022

Áp dụng định lý hàm cosin:

\(b=\sqrt{a^2+c^2-2ac.cosB}=7\)

Diện tích:

\(S_{ABC}=\dfrac{1}{2}ac.sinB=10\sqrt{3}\)