Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Ta có:
\(\frac{S_{OBC}}{S_{ABC}}=\frac{x}{h_A}\)
\(\frac{S_{OAC}}{S_{ABC}}=\frac{y}{h_B}\)
\(\frac{S_{OAB}}{S_{ABC}}=\frac{z}{h_C}\)
\(\Rightarrow \frac{x}{h_A}+\frac{y}{h_B}+\frac{z}{h_C}=\frac{S_{OBC}+S_{OAC}+S_{OAB}}{S_{ABC}}=\frac{S_{ABC}}{S_{ABC}}=1\)
Ta có đpcm.
Bài 7 :
( bạn đạt A = (...) cái biểu thức đấy nhé, tự đặt )
Ta có :
\(\frac{1}{\sqrt{1}}=\frac{1}{1}>\frac{1}{10}=\frac{1}{\sqrt{100}}\)
\(\frac{1}{\sqrt{2}}>\frac{1}{\sqrt{100}}\)
\(\frac{1}{\sqrt{3}}>\frac{1}{\sqrt{100}}\)
\(............\)
\(\frac{1}{\sqrt{100}}=\frac{1}{\sqrt{100}}\)
\(\Rightarrow\)\(A=\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{100}}>\frac{1}{\sqrt{100}}+\frac{1}{\sqrt{100}}+\frac{1}{\sqrt{100}}+...+\frac{1}{\sqrt{100}}\)
\(A>\frac{100}{\sqrt{100}}=\frac{100}{10}=10\)
\(\Rightarrow\)\(A>10\)
Vậy \(A>10\)
Chúc bạn học tốt ~
Bạn làm được mình bài 7 thôi à, mình thấy bạn giỏi lắm mà. Mình có tới mấy chục bài cần giải cơ. Dạo này mình hỏi nhiều vì sắp đi thi.
@Anh: Tử số cũng biến thiên theo ha, hb, hc ...Suy luận được như trên chỉ khi Tử số là một số A không đổi.
=======================================...
Gọi S là diện tích tam giác, r là bánh kính đường tròn nội tiếp
Ta có
ha=2S/a =r(a+b+c)/a
=> ha^2 + hb^2 + hc^2 = r^2(a+b+c)^2 * (1/a^2+1/b^2+1/c^2)}
=> T = (a+b+c)^2/(ha^2+hb^2+hc^2) =
=1/r^2/(1/a^2+1/b^2+1/c^2)
Ta c/m (1/a^2+1/b^2+1/c^2) <=1/4r^2 (*)
=> T<=1/4
=> Max(T) = 1/4 Khi tam giác đều
======================
c/m bất đẳng thức (*)
S = pr
S= √p(p-a)(p-b)(p-c)
=> pr= √p(p-a)(p-b)(p-c)
=> (pr^2) = (p-a)(p-b)(p-c)
=> 1/r^2 = p/(p-a)(p-b)(p-c) = 1/((p-a)(p-b) + 1/(p-b)(p-c) + 1/(p-a)(p-c)
=> 1/4r^2 = 1/[a^2 - (b-c)^2] + 1/[b^2 - (a-c)^2] + 1/[c^2 - (b-a)^2] >= 1/a^2 + 1/b^2 + 1/c^2
=> 1/4r^2>= 1/a^2 + 1/b^2 + 1/c^2
=> (1/r^2)/ 1/a^2 + 1/b^2 + 1/c^2 >= 1/4
Đúng nha Trần Thị Kiều Linh