Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có góc BEC = góc BDC = 90o (góc nội tiếp chắn giữa đường tròn)
Suy ra BD \(\perp\) AC và CE \(\perp\) AB. Mà BD cắt CE tại H là trực tâm \(\Delta\) ABC.
Suy ra AH \(\perp\) BC
Vì AH \(\perp\) BC, BD \(\perp\) AC nên góc HFC = góc HDC = 90o.
Suy ra góc HFC + góc HDC = 180o
Suy ra HFCD là tứ giác nội tiếp
\(\Rightarrow\) góc HDC = góc HCD.
b) Vì M là trung điểm cạnh huyền của hình tam giác vuông ADH nên MD = MA = MH. Tương tự ta có ME = MA = MH
Suy ra MD = ME
Mà OD = OE nên \(\Delta\) OEM = \(\Delta\) ODM \(\Rightarrow\) góc MOE = góc MOD = \(\frac{1}{2}\) góc EOD
Theo qua hệ giữa góc nội tiếp và góc ở tâm cùng chắn cung, ta có góc ECD = \(\frac{1}{2}\) góc EOD
Theo ý a) ta có góc HFD = góc HCD = góc ECD
\(\Rightarrow\) góc MOD = góc HFD hay góc MOD = góc MFD
Suy ra tứ giác MFOD là tứ giác nội tiếp
\(\Rightarrow\) góc MDO = 180o - góc MPO = 90o \(\Rightarrow\) MD \(\perp\) DO
Chứng minh tương tự ta có MEFO là tứ giác nội tiếp
Suy ra 5 điểm M, E, F, O, D cùng thộc 1 đường tròn.
A B C I M H J K
a. ta có \(BI=\frac{1}{4}BA=\frac{3}{4}\)
Dễ thấy hai tam giác \(\Delta ABM~\Delta CBI\Rightarrow\frac{MB}{IB}=\frac{AB}{BC}\Rightarrow MB=\frac{3}{4}.\frac{3}{4}=\frac{9}{16}\)
vậy \(\frac{BM}{BC}=\frac{9}{64}\).
b.Xét tam giác AJB ta áp dụng địh lý menelaus có
\(\frac{AC}{CJ}.\frac{JK}{KB}.\frac{BI}{IA}=1\Rightarrow\frac{JK}{KB}=\frac{3}{2}\Rightarrow\frac{BK}{KJ}=\frac{2}{3}\)
Lời giải:
Đặt $\frac{AB}{3}=\frac{AC}{4}=x\Rightarrow AB=3x; AC=4x$
Áp dụng hệ thức lượng trong tam giác vuông:
$\frac{1}{AB^2}+\frac{1}{AC^2}=\frac{1}{AH^2}$
$\Leftrightarrow \frac{1}{(3x)^2}+\frac{1}{(4x)^2}=\frac{25}{144}$
$\Leftrightarrow \frac{25}{144x^2}=\frac{25}{144}$
$\Rightarrow x^2=1\Rightarrow x=1$
$\Rightarrow AB=3; AC=4$
$\Rightarrow BC=\sqrt{AB^2+AC^2}=\sqrt{3^2+4^2}=5$
Bán kính $R$ của đường tròn ngoại tiếp tam giác $ABC$:
$R=\frac{BC}{2}=2,5$