Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(2^2+2^3+2^4+2^5\)
\(=\left(2^2+2^3\right)+\left(2^4+2^5\right)\)
\(=2^2\left(1+2\right)+2^4\left(1+2\right)\)
\(=2^2.3+2^4.3\)
\(=3\left(2^2+2^4\right)⋮3\)
b) \(4^{20}+4^{21}+4^{22}+4^{23}\)
\(=\left(4^{20}+4^{21}\right)+\left(4^{22}+4^{23}\right)\)
\(=4^{20}\left(1+4\right)+4^{22}\left(1+4\right)\)
\(=4^{20}.5+4^{22}.5\)
\(=5\left(4^{20}+4^{22}\right)⋮5\)
a)
2
2
+
2
3
+
2
4
+
2
5
2
2
+2
3
+2
4
+2
5
=
(
2
2
+
2
3
)
+
(
2
4
+
2
5
)
=(2
2
+2
3
)+(2
4
+2
5
)
=
2
2
(
1
+
2
)
+
2
4
(
1
+
2
)
=2
2
(1+2)+2
4
(1+2)
=
2
2
.
3
+
2
4
.
3
=2
2
.3+2
4
.3
=
3
(
2
2
+
2
4
)
⋮
3
=3(2
2
+2
4
)⋮3
b)
4
20
+
4
21
+
4
22
+
4
23
4
20
+4
21
+4
22
+4
23
=
(
4
20
+
4
21
)
+
(
4
22
+
4
23
)
=(4
20
+4
21
)+(4
22
+4
23
)
=
4
20
(
1
+
4
)
+
4
22
(
1
+
4
)
=4
20
(1+4)+4
22
(1+4)
=
4
20
.
5
+
4
22
.
5
=4
20
.5+4
22
.5
=
5
(
4
20
+
4
22
)
⋮
5
=5(4
20
+4
22
)⋮5
\(A=\left(4+4^2\right)+.......+\left(4^{23}+4^{24}\right)\)
\(A=20.1+20.2^4+.......+20.2^{24}\)
\(A=20.\left(1+2^4+..........+2^{24}\right)\)
Vậy A chia hết cho 20
\(A=\left(4+4^2+4^3\right)+........+\left(4^{22}+4^{23}+4^{24}\right)\)
\(A=4.21+4^4.21+......+4^{20}.21\)
\(A=21.\left(1+4^4+......+4^{20}\right)\)
Vậy A chia hết cho 21
\(A=\left(4+4^2+......+4^6\right)+.........+\left(4^{19}+4^{20}+4^{21}+4^{22}+4^{23}+4^{24}\right)\)\(A=13.420+4^6.13.420+........+4^{18}.13.420\)
\(A=420.13.\left(1+4^6+4^{12}+4^{18}\right)\)
Vậy A chia hết cho 420
a, 3S= 3+ 3^2 +3^3+....+3^2014+3^2015
3S-S=(3+3^2+......+3^2015)-(S=3^0 +3^1 +3^2 + . . . +3^2014)
2S=3^2015-3^0
b,Đề bị sai hay sao????.Thui để sau sẽ có người giúp cậu.Bye Bye!!!!!!!
Tui trả lời câu b nè:
S=(3+3^2+3^4)+...+(3^2012+3^2013+3^2014)
Vì máy tính ko viết được dấu nhân nên tui nói bằng lời còn bạn tự kiểm tra nha
Các tổng trên chia hết cho 7 nên S chia hết cho 7
Đảm bảo là đúng!!! :)
\(A=4+4^2+4^3+...+4^{23}+4^{24}=\left(4+4^2\right)+\left(4^3+4^4\right)+...+\left(4^{23}+4^{24}\right)\)
\(=\left(4+4^2\right)+4^2\left(4+4^2\right)+...+4^{22}\left(4+4^2\right)=\left(4+4^2\right)\left(4^2+...+4^{22}\right)\)
\(=20\left(4^2+...+4^{22}\right)\)maf \(\left(4^2+...+4^{22}\right)>0\Rightarrow20\left(4^2+...+4^{22}\right)⋮20\Rightarrow A⋮20\)
Tuowng Tuwj nhes
\(A=4+4^2+4^3+...+4^{23}+4^{24}=\left(4+4^2+4^3\right)+\left(4^4+4^5+4^6\right)+...+\left(4^{22}+4^{23}+4^4\right)\)
\(=\left(4+4^2+4^3\right)+4^3\left(4+4^2+4^3\right)+...+4^{21}\left(4+4^2+4^3\right)\)
\(=84+4^3.84+...+4^{21}.84=84\left(1+4^3+...+4^{21}\right)\)
\(84⋮21;1+4^3+...+4^{21}\ne0\Rightarrow A⋮21\)
\(A=4+4^2+4^3+...+4^{23}+4^{24}\)
\(=\left(4+4^2+4^3+4^4+4^5+4^6\right)+...+\left(4^{19}+4^{20}+4^{21}+4^{22}+4^{23}+4^{24}\right)\)
\(=\left(4+4^2+4^3+4^4+4^5+4^6\right)+...+4^{18}\left(4+4^2+4^3+4^4+4^5+4^6\right)\)
\(=5460+...+4^{18}.5460=5460\left(1+...+4^{18}\right)\)
\(5460⋮420;1+...+4^{18}\ne0\Rightarrow A⋮420\)
Cho A= 4+42+43+....+423+424. Chứng Minh : A chia hết cho 20 ; A chia hết cho 21 ; A chia hết cho 420
ta có
\(A=\left(4+4^2\right)+\left(4^3+4^4\right)+..+\left(4^{23}+4^{24}\right)\)
\(=20+20\times4^2+..+20\times4^{22}\) thế nên A chia hết cho 20
\(A=\left(4+4^2+4^3\right)+\left(4^4+4^5+4^6\right)+..+\left(4^{22}+4^{23}+4^{24}\right)\)
\(=4\times21+4^4\times21+..+4^{22}\times21\) Thế nên A chia hết cho 21
thế nê A chia hết cho 20x21 =420
Ta có:
A = 4 + 42 + 43 +......+ 423+ 424
= (4 + 42)) + (43 +44)......+ (423+ 424)
=(4 + 42).1+(4 + 42).42+...+(4 + 42).422
=20.(1+42+...+422) chia hết cho 20
Ta lại có:
A = 4 + 42 + 43 +......+ 423+ 424
=(4 + 42 + 43)+...+(422+423+424)
=(4 + 42 + 43).1+...+(4 + 42 + 43).421
=21.(1+...+421) chia hết cho 21
Vì A chia hết cho 21 và 20 , mà ƯCLN(20;21)=1 => A chia hết cho 20 và 21 tức là A chia hết cho 20.21=420
Vậy...
A = 4 + 42 + 43 +......+ 423+ 424
Ta thấy các cặp số liên tiếp cộng lại với nhau đều chia hết cho 20, ví dụ:
4 + 42 = 20, 43 + 44 = 320, 45 + 46 = 5120...
Vì đây là số chẵn, nên A sẽ chia hết cho 20.
Tiếp tục, BC (21 và 4) = {84; 168; 252; 336; 420; 504; 588....}
Như vậy, ta để ý thấy tích của các lũy thừa gồm số 4 và số mũ đều là số chẵn, BC của 4 và 21 cũng đều là số chẵn.
Vậy A chia hết cho 21.
Song, vì A chia hết cho 20 và 21, trong trường hợp này A chỉ có thể chia hết cho 20.21 = 420
Ta có : S = ( 4 + 42 ) + ( 43 + 44 ) + ... + ( 423 + 424 )
= 4( 1 + 4 ) + 43 ( 1 + 4 ) + ..... + 423 ( 1 + 4 )
= 4.5 + 43.5 + .... + 423.5
= 5 ( 1 + 43 + .... + 423 ) chia hết cho 5 ( đpcm )
S = ( 4 + 42 + 43 ) + ( 44 + 45 + 46 ) + ... + ( 422 + 423 + 424 )
= 4 ( 1 + 4 + 16 ) + 44 ( 1 + 4 + 16 ) + .... + 422 ( 1 + 4 + 16 )
= 4.21 + 44 .21 + .... + 422.21
= 21 ( 4 + 44 + ... + 422 ) chia heets cho 21 ( dpcm )
\(A=4+4^2+4^3+...+4^{24}\)
\(A=\left(4+4^2\right)+\left(4^3+4^4\right)+...+\left(4^{23}+4^{24}\right)\)
\(A=4\left(1+4\right)+4^3\left(1+4\right)+...+4^{23}\left(1+4\right)\)
\(A=4.5+4^3.5+...+4^{23}.5\)
\(A=\left(4+4^3+...+4^{23}\right).5\)chia hết cho 5
tương tự như vậy
với 5 thì gộp 2 số liền nhau
với 21 thì gộp 3 số liền nhau và lm tương tự
đúng hộ mình nha :)))))
TL :
Vì : 44444
ht
4^20 + 4^21 + 4^22 + 4^23 = 4^20 x 1 + 4^20 x 4 + 4^22 x 1 = 4^22 x 4 = 4^20 x 5 + 4^22 x 5 chia hết cho 5