Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tại sao có thể kết luận tập nghiệm của phương trình :
\(\sqrt{x}+1=2\sqrt{-x}\) là \(\varnothing\) ?
Khi x=0 ta được : \(\sqrt{0}+1\ne2\sqrt{-0}\)
Khi x < 0 thì \(\sqrt{x}\) không xác định .
Khi x > 0 thì \(\sqrt{-x}\) không xác định .
* Vậy trong mọi trường hợp , không có giá trị nào của ẩn nghiệm đúng với phương trình \(\sqrt{x}+1=2\sqrt{-x}\)
a/ \(\Delta=9m^2-12m+16=\left(3m-2\right)^2+12\ge12>0\forall m\)
b/ để pt có 1 nghiệm <=> Δ = 0
<=> 9m^2-12m+16 = 0 ???
c/ x1= \(\sqrt{4+2\sqrt{3}}\) là nghiệm pt
=> \(4+2\sqrt{3}-3m\cdot\sqrt{4+2\sqrt{3}}+3m-4=0\Leftrightarrow m=\dfrac{2}{3}\)
thay m = 2/3 vào pt ta được:
\(x^2-3\cdot\dfrac{2}{3}x+3\cdot\dfrac{2}{3}-4=x^2-2x-2=0\)
viet: \(x1+x2=2\)
=> x2 = 2 - \(\sqrt{4+2\sqrt{3}}=1-\sqrt{3}\)
Bài a,b,c,e,g,i thì đặt điều kiện rồi bình phương 2 vế rồi giải, bài j chuyển vế rồi bình phương
Chỉ trình bày lời giải, tự tìm điều kiện nha :v
d) \(\sqrt{x+2\sqrt{x-1}}=2\)
\(\Leftrightarrow\sqrt{x-1+2\sqrt{x-1}+1}=2\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}+1\right)^2}=2\)
\(\Leftrightarrow\sqrt{x-1}+1=2\)
\(\Leftrightarrow\sqrt{x-1}=1\)
\(\Rightarrow x-1=1\Leftrightarrow x=2\)
f) \(\sqrt{x+4\sqrt{x-4}}=2\)
\(\Leftrightarrow\sqrt{x-4+2.2\sqrt{x-4}+4}=2\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-4}+2\right)^2}=2\)
\(\Leftrightarrow\sqrt{x-4}+2=2\)
\(\Leftrightarrow\sqrt{x-4}=0\)
\(\Rightarrow x-4=0\Leftrightarrow x=4\)
1) Nhìn cái pt hết ham, nhưng bấm nghiệm đẹp v~`~
\(\left(\sqrt{2}+2\right)\left(x\sqrt{2}-1\right)=2x\sqrt{2}-\sqrt{2}\)
\(\Leftrightarrow\left(\sqrt{2}+2\right)\left(x\sqrt{2}-1\right)-2x\sqrt{2}+\sqrt{2}=0\)
\(\Leftrightarrow2x-\sqrt{2}+2x\sqrt{2}-2-2x\sqrt{2}+\sqrt{2}=0\)
\(\Leftrightarrow2x-2=0\Leftrightarrow2x=2\Rightarrow x=1\)
Đặt \(a=\sqrt[3]{9+4\sqrt{5}},b=\sqrt[3]{9-4\sqrt{5}}\)
\(\Rightarrow\hept{\begin{cases}a+b=x\\ab=1\end{cases}}\)
Ta có: \(x^3=\left(a+b\right)^3=a^3+b^3+3ab\left(a+b\right)\)
\(\Rightarrow x^3=\left(9+4\sqrt{5}\right)+\left(9-4\sqrt{5}\right)+3.1.x\)
\(\Leftrightarrow x^3=18+3x\)
\(\Leftrightarrow x^3-3x-18=0\)
\(\Leftrightarrow\left(x-3\right)\left(x^2+3x+6\right)=0\)
Vì \(x^2+3x+6=\left(x+\frac{3}{2}\right)^2+\frac{15}{4}>0\)
\(\Rightarrow x-3=0\Leftrightarrow x=3\)
Thay x=3 vào \(x^5-3x-18=0\), thấy không thoả mãn.
KL: Đề sai !
a, de phuong trinh tren co nghia thi \(3x-9\ge0\)
\(3x\ge9< =>x\ge3\)
b, de phuong trinh tren co nghia thi \(5-10x\ge0\)
\(< =>10x\le5\)\(< =>x\le\frac{1}{2}\)
c, de phuong trinh tren co nghia thi \(\frac{3}{2x+1}\ge0\)(DK: x khac -1/2)
\(< =>2x+1\ge0\)\(< =>x>-\frac{1}{2}\)
d, de phuong trinh tren co nghia thi \(\frac{2x-4}{3}\ge0\)
\(< =>2x-4\ge0\)\(< =>x\ge2\)
e, de phuong trinh tren co nghia thi \(\frac{x^2}{2x-3}\)
do \(x^2\ge\)suy ra \(2x-3\ge0\)
\(< =>2x\ge3\)\(< =>x\ge\frac{3}{2}\)
ĐKXĐ:\(\left\{{}\begin{matrix}x\ge0\\-x\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x\le0\end{matrix}\right.\Leftrightarrow x=0\)
Thay x=0 vào pt ta có:
\(\sqrt{x}+1=2\sqrt{-x}\\ \Leftrightarrow\sqrt{0}+1=2\sqrt{-0}\\ \Leftrightarrow1=2\left(vô.lí\right)\)
Vậy pt vô nghiệm
đề sai rồi, ko có \(\sqrt{-x}\)đâu, do \(\sqrt{x}\ge0\)