Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt: \(A=1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+....+\frac{1}{\sqrt{2018}}\)
Ta có: \(\frac{1}{\sqrt{k}}=\frac{2}{\sqrt{k}+\sqrt{k}}>\frac{2}{\sqrt{k}+\sqrt{k+1}}=2\left(\sqrt{k+1}-\sqrt{k}\right)\) với \(\forall k\inℕ^∗\)
Do đó ta có: \(A>2\left[\left(\sqrt{2019}-\sqrt{2018}\right)+\left(\sqrt{2018}-\sqrt{2017}\right)+...+\left(\sqrt{3}-\sqrt{2}\right)\right]+1\)
\(=2\left(\sqrt{2019}-\sqrt{2}\right)+1=2\sqrt{2019}-2\sqrt{2}+1>2\sqrt{2019}-3+1>2\sqrt{2019}-2\)
\(>2\sqrt{2018}-2=2\left(\sqrt{2018}-1\right)\)
=> đpcm
a) \(\sqrt{17}-4\) b) \(\sqrt{3}\) c) \(\frac{\sqrt{2}}{2}\) d)\(\frac{\sqrt{x}+1}{\sqrt{x}-1}\) e) \(x-\sqrt{5}\)
f) \(4+2\sqrt{3}\) g) \(3+2\sqrt{2}\) h) \(x+\sqrt{x}+1\) i) \(\frac{3\sqrt{5}-\sqrt{15}}{10}\)
k) \(\sqrt{5}+\sqrt{6}\) i) 5 h) 0 l) \(\sqrt{5}+\sqrt{3}\) m) \(\frac{20\sqrt{3}}{3}\) d) 0
cái chỗ suy ra P e kh hiểu lắm a chỉ e chi tiết với
@Thế Vĩ@
\(P=\sqrt{2}.\frac{\sqrt{2020}-\sqrt{2}}{2}=\sqrt{2}.\frac{\sqrt{2}\left(\sqrt{1010}-1\right)}{2}=2.\frac{\sqrt{1010}-1}{2}=\sqrt{1010}-1\)