K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 5 2017

Đề sai bạn ơi

17 tháng 5 2017

Ta có: \(a^3-b^3=a^3-3a^2b+3ab^2-b^3+3a^2b-3ab^2\) 

\(\Rightarrow a^3-b^3=\left(a-b\right)^3+3ab\left(a-b\right)\) 

Khi \(a-b=2\)và \(ab=4\) thì \(a^3-b^3=2^3+3.4.2=32\) 

14 tháng 4 2019

a)\(a^2+b^2+1\ge ab+a+b\)

\(\Leftrightarrow\left(a^2+b^2-2ab\right)+\left(a^2-2a+1\right)+\left(b^2-2b+1\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(a-1\right)^2+\left(b-1\right)^2\ge0\) (đúng)

\("="\Leftrightarrow a=b=1\)

b) \(a^4+b^4\ge a^3b+ab^3\)

\(\Leftrightarrow a^4+b^4-a^3b-ab^3\ge0\)

\(\Leftrightarrow a^3\left(a-b\right)-b^3\left(a-b\right)\ge0\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\) (luôn đúng)

\("="\Leftrightarrow a=b\)

8 tháng 6 2016

nhan vao 2 ve la song

8 tháng 6 2016

có thể trình bày rõ ra đc ko bạn

17 tháng 7 2017

Bài 1:

a)\(a^2+b^2+c^2=ab+bc+ca\)

\(\Rightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)

\(\Rightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)

\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

Khi \(a=b=c\)

b)\(\left(a+b+c\right)^2=3\left(a^2+b^2+c^2\right)\)

\(\Rightarrow a^2+b^2+c^2+2ab+2bc+2ca=3a^2+3b^2+3c^2\)

\(\Rightarrow-2a^2-2b^2-2c^2+2ab+2bc+2ca=0\)

\(\Rightarrow-\left(a^2-2ab+b^2\right)-\left(b^2-2bc+c^2\right)-\left(c^2-2ca+a^2\right)=0\)

\(\Rightarrow-\left(a-b\right)^2-\left(b-c\right)^2-\left(c-a\right)^2\le0\)

Khi \(a=b=c\)

c)\(\left(a+b+c\right)^2=3\left(ab+bc+ca\right)\)

\(\Rightarrow a^2+b^2+c^2+2ab+2bc+2ca=3ab+3bc+3ca\)

\(\Rightarrow a^2+b^2+c^2-ab-bc-ca=0\)

\(\Rightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)

\(\Rightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)

\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

Khi \(a=b=c\)

Bài 2:

Từ \(a+b+c=0\Rightarrow\left(a+b+c\right)^2=0\)

\(\Rightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=0\)

\(\Rightarrow-2\left(ab+bc+ca\right)=a^2+b^2+c^2\)

\(\Rightarrow ab+bc+ca=-1\)\(\Rightarrow\left(ab+bc+ca\right)^2=1\)

\(\Rightarrow a^2b^2+b^2c^2+c^2a^2+2\left(a^2bc+b^2ca+c^2ab\right)=1\)

\(\Rightarrow a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)=1\)

\(\Rightarrow a^2b^2+b^2c^2+c^2a^2=1\left(vi`....a+b+c=0\right)\)

Khi đó: \(a^2+b^2+c^2=2\Rightarrow\left(a^2+b^2+c^2\right)^2=4\)

\(\Rightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=4\)

\(\Rightarrow a^4+b^4+c^4+2=4\Rightarrow a^4+b^4+c^4=2\)

so u cn tk m sl fr u

17 tháng 7 2017

a2 + b2+ c2 = ab + bc + ca 

=> a2 + b2+ c2 -ab - bc - ca = 0 

=> 2 ( a2 + b2 + c2 -ab -bc - ca) =0

=> ( a2 - 2ab + b2 ) + ( b2 -2bc + c2 ) + ( c2 - 2ca + a2 ) = 0 

<=> ( a-b )2 + ( b -c)2 + ( c- a)2 =0

Do ( a -b)2 \(\ge\)0 ( b-c)2 + \(\ge\)0 ( c -a )2 \(\ge\)0

=> a-b =0 ; b -c = 0 ; c -a = 0 

=> a=b ; b = c ; c =a 

Vậy a = b = c 

6 tháng 4 2015

cau 2

a^2 +b^2+c^2 +3>=2(a+b+c)

<=> a^2+b^2 +c^2 +3 -2a -2b -2c >=0

<=>(a-1)^2+(b-1)^2+(c-1)^2>=0    (luon đúng)

vậy a^2 +b^2 +c^2 +3 >=2(a+b+c)

6 tháng 4 2015

cau 1

a^2 +b^2 +1>= ab +a +b   (H)

<=> 2a^2 +2b^2 -2a -2b -2ab +2>=0   (nhân cả 2 vế với 2 đồng thời chuyển vế)

<=> (a^2 -2a +1) +(b^2-2b+1 )+(a^2 -2ab+b^2)>=0

<=> (a-1)^2+(b-1)^2 +(a-b)^2>=0    (luon dung)

=>H luôn đung

Bài 2: 

a+b+c+d=0

nên b+c=-(a+d)

\(a^3+b^3+c^3+d^3\)

\(=\left(a+d\right)^3-3ad\left(a+d\right)+\left(b+c\right)^3-3bc\left(b+c\right)\)

\(=-\left(b+c\right)^3+3ad\left(b+c\right)+\left(b+c\right)^3-3bc\left(b+c\right)\)

\(=3ad\left(b+c\right)-3bc\left(b+c\right)\)

\(=\left(b+c\right)\left(3ad-3bc\right)\)

\(=3\left(b+c\right)\left(ad-bc\right)\)

30 tháng 10 2020

Không có mô tả.

30 tháng 10 2020

a) Ta có: \(VP=x^4-y^4\)

\(=\left(x^2-y^2\right)\left(x^2+y^2\right)\)

\(=\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)\)

\(=\left(x^3+x^2y+xy^2+y^3\right)\left(x-y\right)=VP\)(đpcm)

b) Ta có: \(VT=\left(a-b\right)\left(a^2+b^2+ab\right)-\left(a+b\right)\left(a^2+b^2-ab\right)\)

\(=a^3-b^3-\left(a^3+b^3\right)\)

\(=a^3-b^3-a^3-b^3\)

\(=-2b^3=VP\)(đpcm)