Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Có \(\left(\sqrt{17-3\sqrt{32}}+\sqrt{17+3\sqrt{32}}\right)^2\)
\(=\left(\sqrt{17-3\sqrt{32}}\right)^2+2\left(\sqrt{17-3\sqrt{32}}\right)\left(\sqrt{17+3\sqrt{32}}\right)\)\(+\left(\sqrt{17=3\sqrt{32}}\right)^2\)
\(=17-3\sqrt{32}+2\sqrt{\left(17-3\sqrt{32}\right)\left(17+3\sqrt{32}\right)}\)\(+17+3\sqrt{32}\)
\(=34+2\sqrt{17^2-9.32}\)
\(=34+2\sqrt{289-288}\)
\(=34+2\sqrt{1}=34+2=36\)
\(\Rightarrow\sqrt{17-3\sqrt{32}}+\sqrt{17+3\sqrt{32}}\)
\(=\sqrt{36}=6\)
(Vì có \(\hept{\begin{cases}\sqrt{17-3\sqrt{32}}\ge0\\\sqrt{17+3\sqrt{32}}\ge0\end{cases}}\)nên \(\sqrt{17-3\sqrt{32}}+\sqrt{17+3\sqrt{32}}\ge0\))

\(\sqrt{7+4\sqrt{3}}=\sqrt{\left(2+\sqrt{3}\right)^2}=2+\sqrt{3}\)
\(\sqrt{8-2\sqrt{12}}=\sqrt{\left(\sqrt{6}-\sqrt{2}\right)^2}=\left|\sqrt{6}-\sqrt{2}\right|=\sqrt{6}-\sqrt{2}\)
\(\sqrt{21+6\sqrt{6}}=\sqrt{\left(3\sqrt{2}-\sqrt{3}\right)^2}=\left|3\sqrt{2}-\sqrt{3}\right|=3\sqrt{2}-\sqrt{3}\)
\(\sqrt{15-6\sqrt{6}}=\sqrt{\left(3-\sqrt{6}\right)^2}=\left|3-\sqrt{6}\right|=3-\sqrt{6}\)
\(\sqrt{29-12\sqrt{5}}=\sqrt{\left(2\sqrt{5}-3\right)^2}=\left|2\sqrt{5}-3\right|=2\sqrt{5}-3\)
\(\sqrt{41+12\sqrt{5}}=\sqrt{\left(6+\sqrt{5}\right)^2}=6+\sqrt{5}\)

Đặt \(A=\sqrt{2+\sqrt{3}}\)
\(\Rightarrow A\sqrt{2}=\sqrt{4+2\sqrt{3}}\)
\(=\sqrt{3+2\sqrt{3}+1}\)
\(=\sqrt{\left(\sqrt{3}+1\right)^2}\)
\(=\sqrt{3}+1\)
\(\Rightarrow A=\frac{\sqrt{3}+1}{2}hay\sqrt{2+\sqrt{3}}=\frac{\sqrt{3}+1}{2}\)
TK nha!

\(\sqrt{3x^2-12x+21}=\sqrt{3x^2-12x+12+9}=\sqrt{3\left(x-2\right)^2+9}\ge\sqrt{9}=3\)
\(\sqrt{5x^2-20x+24}=\sqrt{5x^2-20x+20+4}=\sqrt{5\left(x-2\right)^2+4}\ge\sqrt{4}=2\)
\(-2x^2+8x-3=-2x+8x-8+5=-2\left(x-2\right)^2+5\le5\)
\(VP\ge3+2=5,VT\le5\)
Suy ra \(VP=VT=5\)
Suy ra nghiệm của phương trình đạt tại \(x-2=0\Leftrightarrow x=2\).

Bài 1:
a: Ta có: \(\sqrt{3x^2}=\sqrt{12}\)
\(\Leftrightarrow3x^2=12\)
\(\Leftrightarrow x^2=4\)
hay \(x\in\left\{2;-2\right\}\)
b: Ta có: \(\sqrt{\left(x-2\right)^2}=3\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=3\\x-2=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-1\end{matrix}\right.\)

1, \(\sqrt{8+2\sqrt{15}}=\sqrt{8+2\sqrt{5.3}}=\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}=\sqrt{5}+\sqrt{3}\)
2, \(\sqrt{15-2\sqrt{14}}=\sqrt{14-2\sqrt{14}+1}=\sqrt{\left(\sqrt{14}-1\right)^2}=\sqrt{14}-1\)
3, \(\sqrt{21+8\sqrt{5}}=\sqrt{21+2.4\sqrt{5}}=\sqrt{16+2.4\sqrt{5}+5}\)
\(=\sqrt{\left(4+\sqrt{5}\right)^2}=4+\sqrt{5}\)
\(\sqrt{2+\sqrt{3}}=\sqrt{\frac{1}{4}+3+\sqrt{3}-\frac{5}{4}}\)
\(=\sqrt{\left(\frac{1}{2}+\sqrt{3}\right)^2-\frac{5}{4}}=\sqrt{\left(\frac{1}{2}+\sqrt{3}-\frac{\sqrt{5}}{2}\right)\left(\frac{1}{2}+\sqrt{3}+\frac{\sqrt{5}}{2}\right)}\)
còn đâu bạn tự làm nốt nhé!!