K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 5 2016

Không nhất thiết phải sử dụng phép đồng dư.

Nhận xét: với tích của mọi số có tận cùng là 6 ta đều có chữ số tận cùng là 6 tức là 6n luôn tận cùng là 6

Vậy 62009 tận cùng là 6

18 tháng 5 2016

\(6^{2009}=6^{2008}.6=.......6.6=.......6\)

Suy ra chữ số tận cùng của \(6^{2009}\)=6

30 tháng 1 2017

Làm thế này: 521=511.510521=511.510

511≡828125511≡828125 (mod 106106)

510≡765625510≡765625 (mod 106106)

Do đó: 521≡828125.765625521≡828125.765625 (mod 106106)

828125.765625≡203125828125.765625≡203125 (mod 106106)

mk ko chắc

30 tháng 1 2017

5^21=5^11.5^10

5^11=828125

5^10=765625

do đó 5^21 ≡ 828125.765625

828125.765625 ≡ 203125

2 tháng 9 2018

Ta có:

\(2^{2012}=\left(2^4\right)^{503}=16^{503}\)

Ta có:

\(16^5\equiv576\left(mod1000\right)\)

\(\Rightarrow\left(16^5\right)^2\equiv576^2\equiv776\left(mod1000\right)\)

\(\Rightarrow\left(16^{10}\right)^2\equiv776^2\equiv176\left(mod1000\right)\)

\(\Rightarrow\left(16^{20}\right)^4\equiv176^4\equiv576\left(mod1000\right)\)

\(\Rightarrow\left(16^{80}\right)^3\equiv576^3\equiv976\left(mod1000\right)\)

\(\Rightarrow\left(16^{240}\right)^2\equiv976^2\equiv576\left(mod1000\right)\)

\(\Rightarrow16^{480}\equiv576\left(mod1000\right)\)     (1)

Ta có \(16^{20}\equiv576\left(mod1000\right)\)

\(\Rightarrow16^{23}\equiv576.16^3\equiv296\left(mod1000\right)\) (2)

Từ (1),(2)

\(\Rightarrow16^{503}\equiv296.576\equiv496\left(mod1000\right)\)

\(\Rightarrow2^{2012}\equiv496\left(mod1000\right)\)

vậy 3 chữ số tận cùng của 2^2012 là 496

8 tháng 5 2016

Tách 2^999(2^9)^111

rồi suy ra theo mod 100

31 tháng 12 2015

ko bit , do dien , ro 

1 - 2  /  2 - 7  /  4 - 1  /  5 - 1

11 tháng 12 2015

Lê Thị Như Ý09/12/2014 lúc 21:06  Trả lời 5  Đánh dấu

1, Chữ số tận cùng của 22009 là ?

2, Chữ số tận cùng của 71993 là ?

3, Chữ số tận cùng của 2+ 2+ ... + 2100 là ?

4, Chữ số tận cùng của 20092008 là ?

5, Chữ số tận cùng của 171000 là?

6, Chữ số tận cùng của 2.4.6. ... .48 - 1.3.5. ... .49 là ?

23 tháng 2 2018

9 đúng ko

24 tháng 2 2018

mình ko biết nhưng bạn nêu cách giải được ko

20 tháng 3 2017

\(5^5\equiv3125\)( mod 1000000)

\(5^{15}\equiv578125\)

\(5^1\equiv5\)

\(5^{21}\equiv5.3125.578125\equiv203125\)

13 tháng 1 2018

 Ta thấy: 87^6là số chẵn =>87^6 =2k (\(k\in\) N)

      20098^7^6  = (.....9)8^7^6 = (.....9)2k = .....1.

    Vậy 20098^7^6 có chữ số tận cùng là 1.

13 tháng 1 2018

\(2009^{8^{7^6}}\)

\(=\left(....1\right)^{7^6}\)

\(=\left(...1\right)^6\)

\(=....1\)

P/S:  tham khảo dưới đây nha!!!

I. Tìm một chữ số tận cùng
Tính chất 1: a) Các số có tận cùng là 0,1,5,6 khi nâng lên luỹ thừa bậc bất kì thì chữ số tận cùng vẫn không thay đổi
b) Các số có tận cùng là 4,9 khi nâng lên luỹ thừa bậc lẻ thì chữ số tận cùng không đổi
c) Các số tận cùng là 3,7,9 khi nâng lên luỹ thừa bậc 4n(n thuộc N) thì chữ số tận cùng là 1.
d) Các số tận cùng là 2,4,8 khi nâng lên luỹ thừa bậc 4n(n thuộc N) thì chữ số tận cùng là 6.
e) Tích của một số tự nhiên có chữ số tận cùng là 5 với bất kì số tự nhiên lẻ nào cũng cho ta số có chữ số tận cùng là 5.
Tính chất 2: Một số tự nhiên bất kì, khi nâng lên lũy thừa bậc 4n + 1 (n thuộc N) thì chữ số tận cùng vẫn không thay đổi. 
Tính chất 3: a) Số có chữ số tận cùng là 3 khi nâng lên lũy thừa bậc 4n + 3 sẽ có chữ số tận cùng là 7 ; số có chữ số tận cùng là 7 khi nâng lên lũy thừa bậc 4n + 3 sẽ có chữ số tận cùng là 3. 
b) Số có chữ số tận cùng là 2 khi nâng lên lũy thừa bậc 4n + 3 sẽ có chữ số tận cùng là 8 ; số có chữ số tận cùng là 8 khi nâng lên lũy thừa bậc 4n + 3 sẽ có chữ số tận cùng là 2. 
c) Các số có chữ số tận cùng là 0, 1, 4, 5, 6, 9, khi nâng lên lũy thừa bậc 4n + 3 sẽ không thay đổi chữ số tận cùng.