Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Mệnh đề sai;
b) Mệnh đề chứa biến;
c) Mệnh đề chứa biến;
d) Mệnh đề đúng.
a, Mệnh đề sai
b, Mệnh đề chứa biến
c, Mệnh đề chứa biến
d, Mệnh đề đúng
thì phân tích thành nhân tử là oke
\(x^2+x+1>0\)
\(\Leftrightarrow x^2+x+\frac{1}{4}+\frac{3}{4}>0\)
\(\Leftrightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\)*đúng*
Ta có:\(x^2+x+1=\left(x^2+x+\frac{1}{4}\right)+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)
Vì\(\left(x+\frac{1}{2}\right)^2\ge0\forall x\in R\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\left(đpcm\right)\)
\(x^2+x+1=x^2+2.\frac{1}{2}x+\frac{1}{4}+\frac{3}{4}\)
\(=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)
Vì (x+1/2)^2 \(\ge\)0 nên (x+1/2)^2 +3/4 >0
hk tốt
tk đi
Câu 3:
a: Vì \(x^2+x+1=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x\)
nên P(x) luôn là mệnh đề đúng
b: \(\Leftrightarrow x< =\sqrt{x}\)
\(\Leftrightarrow\sqrt{x}\left(\sqrt{x}-1\right)< =0\)
\(\Leftrightarrow\sqrt{x}-1< =0\)
=>0<=x<=1
Đặt \(x^2=a\ge0;y^2=b\ge0\)
Ta có BĐT phụ:\(4ab\le\left(a+b\right)^2\Leftrightarrow\left(a-b\right)^2\ge0\left(true\right)\)
Ta có:\(\frac{4ab}{\left(a+b\right)^2}+\frac{a}{b}+\frac{b}{a}\ge\frac{\left(a+b\right)^2}{\left(a+b\right)^2}+2\sqrt{\frac{a}{b}\cdot\frac{b}{a}}=3\) ( BĐT AM-GM )
Ta có đpcm
Câu 2:
\(\frac{a^2b}{2a^3+b^3}-\frac{1}{3}+1-\frac{a^2+2ab}{2a^2+b^2}\ge0\)
\(\Leftrightarrow\frac{\left(a-b\right)^2}{2a^2+b^2}-\frac{\left(a-b\right)^2\left(2a+b\right)}{3\left(2a^3+b^3\right)}\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\left[\frac{1}{2a^2+b^2}-\frac{\left(2a+b\right)}{3\left(2a^3+b^3\right)}\right]\ge0\)
\(\Leftrightarrow\frac{2\left(a-b\right)^4\left(a+b\right)}{3\left(2a^2+b^2\right)\left(2a^3+b^3\right)}\ge0\left(ok!\right)\)
Em tính/ quy đồng/ phân tích thành nhân tử sai chỗ nào thì chị tự check nhá:)
\(A=\frac{1}{2}.xy.2xy\left(x^2+y^2\right)\le\frac{1}{2}.\frac{1}{4}\left(2xy+x^2+y^2\right)^2=2\)
Mình áp dụng luôn Cô - si cho các số ta được
a) \(\frac{x}{2}+\frac{18}{x}\ge2\sqrt{\frac{x}{2}\cdot\frac{18}{x}}=2.\sqrt{9}=2.3=6\)
b) \(y=\frac{x}{2}+\frac{2}{x-1}=\frac{x-1}{2}+\frac{2}{x-1}+\frac{1}{2}\ge2\sqrt{\frac{x-1}{2}\cdot\frac{2}{x-1}}+\frac{1}{2}=2+\frac{1}{2}=\frac{5}{2}\)
c) \(\frac{3x}{2}+\frac{1}{x+1}=\frac{3\left(x+1\right)}{2}+\frac{1}{x+1}-\frac{3}{2}\ge2\sqrt{\frac{3\left(x+1\right)}{2}\cdot\frac{1}{x+1}}-\frac{3}{2}=2\sqrt{\frac{3}{2}}-\frac{3}{2}=\frac{-3+2\sqrt{6}}{2}\)
h) \(x^2+\frac{2}{x^2}\ge2\sqrt{x^2\cdot\frac{2}{x^2}}=2\sqrt{2}\)
g) \(\frac{x^2+4x+4}{x}=\frac{\left(x+2\right)^2}{x}\ge0\)
a) \(x^2+y^2=0\) ( 1 )
Ta có :
\(x^2\ge0\forall x\)
\(y^2\ge0\forall x\)
Để ( 1 ) = 0
\(\Rightarrow\hept{\begin{cases}x^2=0\\y^2=0\end{cases}}\)
\(\hept{\begin{cases}x=0\\y=0\end{cases}}\)
\(x^2+y^2=0\) với \(x=y=0\) là mệnh đề đúng
\(x^2+y^2=0\) với \(\orbr{\begin{cases}x\ne0\\y\ne0\end{cases}}\) là mệnh đề sai
b) \(x^2+y^2\ne0\) ( 2 )
Vì \(x^2\ge0\forall x\)
\(y^2\ge0\forall y\)
Nên \(x^2+y^2\ne0\Leftrightarrow\orbr{\begin{cases}x^2\ne0\\y^2\ne0\end{cases}}\)
\(\orbr{\begin{cases}x\ne0\\y\ne0\end{cases}}\)
\(x^2+y^2\ne0\) với \(\orbr{\begin{cases}x\ne0\\y\ne0\end{cases}}\) là mệnh đề đúng
\(x^2+y^2\ne0\) với \(\hept{\begin{cases}x=0\\y=0\end{cases}}\) là mệnh đề sai
đéo bít