\(\dfrac{2009^{2008}+1}{2009^{2009}+1}\) và B = \(\df...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 4 2017

B = \(\dfrac{2009^{2009}+1}{2009^{2010}+1}\)<\(\dfrac{2009^{2009}+1+2008}{2009^{2010}+1+2008}\)=\(\dfrac{2009^{2009}+2009}{2009^{2010}+2009}\)=\(\dfrac{2009.\left(2009^{2008}+1\right)}{2009.\left(2009^{2009}+1\right)}\)=\(\dfrac{2009^{2008}+1}{2009^{2019}+1}\)= A

Vậy A > B

22 tháng 4 2017

Ta có :

\(2009A=\dfrac{2009^{2009}+2009}{2009^{2009}+1}=\dfrac{2009^{2009}+1+2008}{2009^{2009}+1}=\dfrac{2009^{2009}+1}{2009^{2009}+1}+\dfrac{2008}{2009^{2009}+1}=1+\dfrac{2008}{2009^{2009}+1}\)

\(2009B=\dfrac{2009^{2010}+2009}{2009^{2010}+1}=\dfrac{2009^{2010}+1+2008}{2010^{2010}+1}=\dfrac{2009^{2010}+1}{2009^{2010}+1}+\dfrac{2008}{2009^{2010}+1}=1+\dfrac{2008}{2009^{2010}}\)

\(\)\(1+\dfrac{2008}{2009^{2009}+1}>1+\dfrac{2008}{2009^{2010}+1}\Rightarrow A>B\)

~ Học tốt ~

26 tháng 5 2018

1.

\(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{99}}+\frac{1}{2^{100}}+\frac{1}{2^{100}}\)

\(=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}+\left(\frac{1}{2^{100}}+\frac{1}{2^{100}}\right)\)

\(=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}+\frac{1}{2^{99}}\)

cứ làm như vậy ta được :

\(=1+1=2\)

26 tháng 5 2018

2. Ta có :

\(\frac{2008+2009}{2009+2010}=\frac{2008}{2009+2010}+\frac{2009}{2009+2010}\)

vì \(\frac{2008}{2009}>\frac{2008}{2009+2010}\)\(\frac{2009}{2010}>\frac{2009}{2009+2010}\)

\(\Rightarrow\frac{2008}{2009}+\frac{2009}{2010}>\frac{2008+2009}{2009+2010}\)

15 tháng 3 2018

ta thấy:

\(\dfrac{2008}{2009}>\dfrac{2008}{2009+2010}\)(1)

\(\dfrac{2009}{2010}>\dfrac{2009}{2009+2010}\)(2)

từ 1 và 2 cộng vế với vế ta dc \(\dfrac{2008}{2009}+\dfrac{2009}{2010}>\dfrac{2008}{2009+2010}+\dfrac{2009}{2009+2010}=\dfrac{2008+2009}{2009+2010}\)

chúc bạn học tốt ^^

29 tháng 4 2018

Hình như hơi sai bạn Hoàng Anh Thư ạ

12 tháng 7 2017

Đặt \(A=\dfrac{2009^{2008}+1}{2009^{2009}+1}\)\(B=\dfrac{2009^{2007}+1}{2009^{2008}+1}\)

Ta có:

\(2009A=\dfrac{2009.\left(2009^{2008}+1\right)}{2009^{2009}+1}=\dfrac{2009^{2009}+2009}{2009^{2009}+1}\)

\(=\dfrac{2009^{2009}+1+2008}{2009^{2009}+1}=\dfrac{2009^{2009}+1}{2009^{2009}+1}+\dfrac{2008}{2009^{2009}+1}\)

\(=1+\dfrac{1}{2009^{2009}+1}\)

\(2009B=\dfrac{2009.\left(2009^{2007}+1\right)}{2009^{2008}+1}=\dfrac{2009^{2008}+2009}{2009^{2008}+1}\)

\(=\dfrac{2008^{2008}+1+2008}{2009^{2008}+1}=\dfrac{2008^{2008}+1}{2009^{2008}+1}+\dfrac{2008}{2009^{2008}+1}\)

\(=1+\dfrac{2008}{2009^{2008}+1}\)

\(1+\dfrac{2008}{2009^{2009}+1}< 1+\dfrac{2008}{2009^{2008}+1}\)

Nên \(10A< 10B\) \(\Rightarrow A< B\)

Vậy \(\dfrac{2009^{2008}+1}{2009^{2009}+1}< \dfrac{2009^{2007}+1}{2009^{2008}+1}\)

~ Học tốt ~

12 tháng 7 2017

Nếu:

\(\dfrac{a}{b}< 1\Rightarrow\dfrac{a+m}{b+m}< 1\left(m\in N\right)\)

\(A=\dfrac{2009^{2008}+1}{2009^{2009}+1}< 1\)

\(\Rightarrow A< \dfrac{2009^{2008}+1+2008}{2009^{2009}+1+2008}\Rightarrow A< \dfrac{2009^{2008}+2009}{2009^{2009}+2009}\Rightarrow A< \dfrac{2009\left(2009^{2007}+1\right)}{2009\left(2009^{2008}+1\right)}\Rightarrow A< \dfrac{2009^{2007}+1}{2009^{2008}+1}=B\)\(\Rightarrow A< B\)

15 tháng 3 2017

A=\(\dfrac{2009^{2010}+1}{2009^{2009}+1}\)

2009A=\(\dfrac{(2009^{2010}+1)+0}{2009^{2010}+1}\)

= 1+\(\dfrac{0}{2009^{2010}+1}\)= 1+0 =1

B=\(\dfrac{2009^{2011}-2}{2009^{2010}-2}\)

2009B=\(\dfrac{2009^{2011}-1}{2009^{2011}-2009}\)

=\(\dfrac{(2009^{2011}-1)-0}{2009^{2011}-2009}\)

= \(1-\dfrac{0}{2009^{2011}-2009}\)

=1-0= 1

Vì 1=1\(\Rightarrow A=B\)

16 tháng 4 2017

Ta có : A = 2009^2010+1/2009^2009+1

Suy ra: 1/2009 A = 1 - 2008/2009^2010+2009 (1)

Lại có:B = 2009^2011 - 2 / 2009^2010 - 2

Suy ra : 1/2009 B = 1 + 4016/2009^2011-4018 (2)

Vì 1 - 2008/2009^2010+2009 < 1 + 4016/2009^2011-4018 (3)

Từ (1);(2) và (3) suy ra : A<B

26 tháng 2 2018

Ta có : 

\(B=\frac{2008+2009+2010}{2009+2010+2011}=\frac{2008}{2009+2010+2011}+\frac{2009}{2009+2010+2011}+\frac{2010}{2009+2010+2011}\)

Vì : 

\(\frac{2008}{2009}>\frac{2008}{2009+2010+2011}\)

\(\frac{2009}{2010}>\frac{2009}{2009+2010+2011}\)

\(\frac{2010}{2011}>\frac{2010}{2009+2010+2011}\)

Nên \(\frac{2008}{2009}+\frac{2009}{2010}+\frac{2010}{2011}>\frac{2008}{2009+2010+2011}+\frac{2009}{2009+2010+2011}+\frac{2010}{2009+2010+2011}\)

\(\Rightarrow\)\(A>B\)

Vậy \(A>B\)

26 tháng 2 2018

Ta có: \(B=\frac{2008+2009+2010}{2009+2010+2011}\)

                  \(=\frac{2008}{2009+2010+2011}+\frac{2009}{2009+2010+2011}+\frac{2010}{2009+2010+2011}\)

Vì \(\frac{2008}{2009}>\frac{2008}{2009+2010+2011}\)

    \(\frac{2009}{2010}>\frac{2009}{2009+2010+2011}\)

   \(\frac{2010}{2011}>\frac{2010}{2009+2010+2011}\)

nên \(\frac{2008}{2009}+\frac{2009}{2010}+\frac{2010}{2011}>\frac{2008+2009+2010}{2009+2010+2011}\)

hay A > B

Vậy A > B 

26 tháng 2 2018

\(B=\dfrac{2008+2009+2010}{2009+2010+2011}=\dfrac{2008}{2009+2010+2011}+\dfrac{2009}{2009+2010+2011}+\dfrac{2010}{2009+2010+2011}\)Ta có : \(\dfrac{2008}{2009}>\dfrac{2008}{2009+2010+2011}\)

\(\dfrac{2009}{2010}>\dfrac{2009}{2009+2010+2011}\)

\(\dfrac{2010}{2011}>\dfrac{2010}{2009+2010+2011}\)\(=>\dfrac{2008}{2009}+\dfrac{2009}{2010}+\dfrac{2010}{2011}>\dfrac{2008+2009+2010}{2009+2010+2011}\)

Hay A > B

23 tháng 12 2018

bằng nhau bạn nhé

6 tháng 4 2017

ta có: \(A=\dfrac{2008^{2009}+2}{2008^{2009}-1}=\dfrac{2008^{2009}-1+3}{2008^{2009}-1}=1+\dfrac{3}{2008^{2009}-1}\)

B=\(\dfrac{2008^{2009}}{2008^{2009}-3}=\dfrac{2008^{2009}-3+3}{2008^{2009}-3}=1+\dfrac{3}{2008^{2009}-3}\)

ta thấy: \(1+\dfrac{3}{2008^{2009}-1}\)<\(1+\dfrac{3}{2008^{2009}-3}\)

vậy A<B