Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
\(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{99}}+\frac{1}{2^{100}}+\frac{1}{2^{100}}\)
\(=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}+\left(\frac{1}{2^{100}}+\frac{1}{2^{100}}\right)\)
\(=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}+\frac{1}{2^{99}}\)
cứ làm như vậy ta được :
\(=1+1=2\)
2. Ta có :
\(\frac{2008+2009}{2009+2010}=\frac{2008}{2009+2010}+\frac{2009}{2009+2010}\)
vì \(\frac{2008}{2009}>\frac{2008}{2009+2010}\); \(\frac{2009}{2010}>\frac{2009}{2009+2010}\)
\(\Rightarrow\frac{2008}{2009}+\frac{2009}{2010}>\frac{2008+2009}{2009+2010}\)
ta thấy:
\(\dfrac{2008}{2009}>\dfrac{2008}{2009+2010}\)(1)
\(\dfrac{2009}{2010}>\dfrac{2009}{2009+2010}\)(2)
từ 1 và 2 cộng vế với vế ta dc \(\dfrac{2008}{2009}+\dfrac{2009}{2010}>\dfrac{2008}{2009+2010}+\dfrac{2009}{2009+2010}=\dfrac{2008+2009}{2009+2010}\)
chúc bạn học tốt ^^
Đặt \(A=\dfrac{2009^{2008}+1}{2009^{2009}+1}\) và \(B=\dfrac{2009^{2007}+1}{2009^{2008}+1}\)
Ta có:
\(2009A=\dfrac{2009.\left(2009^{2008}+1\right)}{2009^{2009}+1}=\dfrac{2009^{2009}+2009}{2009^{2009}+1}\)
\(=\dfrac{2009^{2009}+1+2008}{2009^{2009}+1}=\dfrac{2009^{2009}+1}{2009^{2009}+1}+\dfrac{2008}{2009^{2009}+1}\)
\(=1+\dfrac{1}{2009^{2009}+1}\)
\(2009B=\dfrac{2009.\left(2009^{2007}+1\right)}{2009^{2008}+1}=\dfrac{2009^{2008}+2009}{2009^{2008}+1}\)
\(=\dfrac{2008^{2008}+1+2008}{2009^{2008}+1}=\dfrac{2008^{2008}+1}{2009^{2008}+1}+\dfrac{2008}{2009^{2008}+1}\)
\(=1+\dfrac{2008}{2009^{2008}+1}\)
Vì \(1+\dfrac{2008}{2009^{2009}+1}< 1+\dfrac{2008}{2009^{2008}+1}\)
Nên \(10A< 10B\) \(\Rightarrow A< B\)
Vậy \(\dfrac{2009^{2008}+1}{2009^{2009}+1}< \dfrac{2009^{2007}+1}{2009^{2008}+1}\)
~ Học tốt ~
Nếu:
\(\dfrac{a}{b}< 1\Rightarrow\dfrac{a+m}{b+m}< 1\left(m\in N\right)\)
\(A=\dfrac{2009^{2008}+1}{2009^{2009}+1}< 1\)
\(\Rightarrow A< \dfrac{2009^{2008}+1+2008}{2009^{2009}+1+2008}\Rightarrow A< \dfrac{2009^{2008}+2009}{2009^{2009}+2009}\Rightarrow A< \dfrac{2009\left(2009^{2007}+1\right)}{2009\left(2009^{2008}+1\right)}\Rightarrow A< \dfrac{2009^{2007}+1}{2009^{2008}+1}=B\)\(\Rightarrow A< B\)
A=\(\dfrac{2009^{2010}+1}{2009^{2009}+1}\)
2009A=\(\dfrac{(2009^{2010}+1)+0}{2009^{2010}+1}\)
= 1+\(\dfrac{0}{2009^{2010}+1}\)= 1+0 =1
B=\(\dfrac{2009^{2011}-2}{2009^{2010}-2}\)
2009B=\(\dfrac{2009^{2011}-1}{2009^{2011}-2009}\)
=\(\dfrac{(2009^{2011}-1)-0}{2009^{2011}-2009}\)
= \(1-\dfrac{0}{2009^{2011}-2009}\)
=1-0= 1
Vì 1=1\(\Rightarrow A=B\)
Ta có : A = 2009^2010+1/2009^2009+1
Suy ra: 1/2009 A = 1 - 2008/2009^2010+2009 (1)
Lại có:B = 2009^2011 - 2 / 2009^2010 - 2
Suy ra : 1/2009 B = 1 + 4016/2009^2011-4018 (2)
Vì 1 - 2008/2009^2010+2009 < 1 + 4016/2009^2011-4018 (3)
Từ (1);(2) và (3) suy ra : A<B
Ta có :
\(B=\frac{2008+2009+2010}{2009+2010+2011}=\frac{2008}{2009+2010+2011}+\frac{2009}{2009+2010+2011}+\frac{2010}{2009+2010+2011}\)
Vì :
\(\frac{2008}{2009}>\frac{2008}{2009+2010+2011}\)
\(\frac{2009}{2010}>\frac{2009}{2009+2010+2011}\)
\(\frac{2010}{2011}>\frac{2010}{2009+2010+2011}\)
Nên \(\frac{2008}{2009}+\frac{2009}{2010}+\frac{2010}{2011}>\frac{2008}{2009+2010+2011}+\frac{2009}{2009+2010+2011}+\frac{2010}{2009+2010+2011}\)
\(\Rightarrow\)\(A>B\)
Vậy \(A>B\)
Ta có: \(B=\frac{2008+2009+2010}{2009+2010+2011}\)
\(=\frac{2008}{2009+2010+2011}+\frac{2009}{2009+2010+2011}+\frac{2010}{2009+2010+2011}\)
Vì \(\frac{2008}{2009}>\frac{2008}{2009+2010+2011}\)
\(\frac{2009}{2010}>\frac{2009}{2009+2010+2011}\)
\(\frac{2010}{2011}>\frac{2010}{2009+2010+2011}\)
nên \(\frac{2008}{2009}+\frac{2009}{2010}+\frac{2010}{2011}>\frac{2008+2009+2010}{2009+2010+2011}\)
hay A > B
Vậy A > B
\(B=\dfrac{2008+2009+2010}{2009+2010+2011}=\dfrac{2008}{2009+2010+2011}+\dfrac{2009}{2009+2010+2011}+\dfrac{2010}{2009+2010+2011}\)Ta có : \(\dfrac{2008}{2009}>\dfrac{2008}{2009+2010+2011}\)
\(\dfrac{2009}{2010}>\dfrac{2009}{2009+2010+2011}\)
\(\dfrac{2010}{2011}>\dfrac{2010}{2009+2010+2011}\)\(=>\dfrac{2008}{2009}+\dfrac{2009}{2010}+\dfrac{2010}{2011}>\dfrac{2008+2009+2010}{2009+2010+2011}\)
Hay A > B
ta có: \(A=\dfrac{2008^{2009}+2}{2008^{2009}-1}=\dfrac{2008^{2009}-1+3}{2008^{2009}-1}=1+\dfrac{3}{2008^{2009}-1}\)
B=\(\dfrac{2008^{2009}}{2008^{2009}-3}=\dfrac{2008^{2009}-3+3}{2008^{2009}-3}=1+\dfrac{3}{2008^{2009}-3}\)
ta thấy: \(1+\dfrac{3}{2008^{2009}-1}\)<\(1+\dfrac{3}{2008^{2009}-3}\)
vậy A<B
B = \(\dfrac{2009^{2009}+1}{2009^{2010}+1}\)<\(\dfrac{2009^{2009}+1+2008}{2009^{2010}+1+2008}\)=\(\dfrac{2009^{2009}+2009}{2009^{2010}+2009}\)=\(\dfrac{2009.\left(2009^{2008}+1\right)}{2009.\left(2009^{2009}+1\right)}\)=\(\dfrac{2009^{2008}+1}{2009^{2019}+1}\)= A
Vậy A > B
Ta có :
\(2009A=\dfrac{2009^{2009}+2009}{2009^{2009}+1}=\dfrac{2009^{2009}+1+2008}{2009^{2009}+1}=\dfrac{2009^{2009}+1}{2009^{2009}+1}+\dfrac{2008}{2009^{2009}+1}=1+\dfrac{2008}{2009^{2009}+1}\)
\(2009B=\dfrac{2009^{2010}+2009}{2009^{2010}+1}=\dfrac{2009^{2010}+1+2008}{2010^{2010}+1}=\dfrac{2009^{2010}+1}{2009^{2010}+1}+\dfrac{2008}{2009^{2010}+1}=1+\dfrac{2008}{2009^{2010}}\)
\(\)Vì \(1+\dfrac{2008}{2009^{2009}+1}>1+\dfrac{2008}{2009^{2010}+1}\Rightarrow A>B\)
~ Học tốt ~