\(\sqrt{x}+\sqrt{y}=1960\)
  • \(\sqrt{x}+\sqrt{y}=\sqrt{1...">
    K
    Khách

    Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

    13 tháng 8 2016
    Yêu cầu đề là gì thế bạn
    13 tháng 8 2016

    Giải phương trình bạn ạ . Làm giúp mk vs

    25 tháng 2 2020

    1/HPT\(\Leftrightarrow\hept{\begin{cases}x^2+y^2=6-\left(x+y\right)=3\\\left(x+y\right)^2=9\end{cases}}\Rightarrow2xy=\left(x+y\right)^2-\left(x^2+y^2\right)=9-3=6\Rightarrow xy=3\)

    Kết hợp đề bài có được: \(\hept{\begin{cases}x+y=3\\xy=3\end{cases}}\). Dùng hệ thức Viet đảo là xong.

    31 tháng 8 2016

    ko biết

    31 tháng 8 2016

    Bài quá dễ tự làm đi 

    k mình mình giải cho

    2 tháng 8 2016

    ~~~~~1)~~~~~

    Đặt * \(N=\left(\frac{\sqrt{\sqrt{5}+2}+\sqrt{\sqrt{5}-2}}{\sqrt{\sqrt{5}-1}}\right)^2\left(ĐK:N>0\right)\)

    \(M=\sqrt{3-2\sqrt{2}}\)

    Ta có:

    ** \(N=\left(\frac{\sqrt{\sqrt{5}+2}+\sqrt{\sqrt{5}-2}}{\sqrt{\sqrt{5}-1}}\right)^2\)

    \(\Rightarrow N^2=\frac{\sqrt{5}+2+\sqrt{5}-2+2\left(5-4\right)}{\sqrt{5}+1}=\frac{2\sqrt{5}+2}{\sqrt{5}+1}=\frac{2\left(\sqrt{5}+1\right)}{\sqrt{5}+1}=2\)

    \(\Rightarrow N=\sqrt{2}\left(1\right)\)

    ** \(M=\sqrt{3-2\sqrt{2}}=\sqrt{\left(\sqrt{2}-1\right)^2}=\sqrt{2}-1\left(2\right)\)

    Từ (1) và (2) suy ra:

    \(\frac{\sqrt{\sqrt{5}+2}+\sqrt{\sqrt{5}-2}}{\sqrt{\sqrt{5}-1}}-\sqrt{3-2\sqrt{2}}=\sqrt{2}-\sqrt{2}+1=1\)

    ~~~~~2)~~~~~

    \(\sqrt{x-1}=x+1\left(1\right)\) 

    Bình phương 2 vế, ta được:

    \(\left(1\right)\Leftrightarrow x-1=\left(x+1\right)^2\)

    \(\Leftrightarrow x-1=x^2+2x+1\)

    \(\Leftrightarrow x^2+x+2=0\)

    \(\Leftrightarrow x\left(x+1\right)+2>0\Rightarrow PTVN\)

    ~~~~~3)~~~~~

    \(\sqrt{\left(2x-1\right)^2}=x+2\)

    \(\Leftrightarrow2x-1=x+2\)

    \(\Leftrightarrow2x-x=2+1\)

    \(\Leftrightarrow x=3\)

    (Chúc bạn học tốt và nhớ tíck cho mình với nhá!)

    2 tháng 8 2016

    b)BÌnh 2 vế ta có:

    căn (x-1)^2 = (x+1)^2

    <=> x - 1 =x^2+ 2x+ 1

    <=> -x^2 - x -2= 0

    Denta: (-1)^2-4*(-1*(-2))=-7<0 -->vô nghiệm

    c)<=>2x-1=x+2

    <=>2x-x=1+2

    <=>x=3 

    26 tháng 7 2016

    \(2.< =>5\sqrt{x-1}-6\sqrt{x-1}-3\sqrt{x-1}=2\sqrt{2x-3}\)

    \(< =>\sqrt{x-1}\left(5-6+3\right)=2\sqrt{2x-3}\)

    \(< =>2\sqrt{x-1}=2\sqrt{2x-3}\)

    26 tháng 7 2016

    \(< =>x-1=2x-3\)

    \(< =>x=2\)

    4 tháng 4 2016

    +Xét 2 riêng trường hợp x = 0 và y = 0.

    +Xét x, y đều khác 0

    Hệ \(\Leftrightarrow\int^{\frac{1}{4}+\frac{2\sqrt{x}+\sqrt{y}}{x+y}=\frac{2}{\sqrt[4]{x}}}_{\frac{1}{4}-\frac{2\sqrt{x}+\sqrt{y}}{x+y}=\frac{1}{\sqrt[4]{y}}}\Leftrightarrow\frac{1}{2}=\frac{2}{\sqrt[4]{x}}+\frac{1}{\sqrt[4]{y}}\text{ }\&\text{ }2.\frac{2\sqrt{x}+\sqrt{y}}{x+y}=\frac{2}{\sqrt[4]{x}}-\frac{1}{\sqrt[4]{y}}\)

    \(\Rightarrow\frac{2\sqrt{x}+\sqrt{y}}{x+y}=\left(\frac{2}{\sqrt[4]{x}}+\frac{1}{\sqrt[4]{y}}\right)\left(\frac{2}{\sqrt[4]{x}}-\frac{1}{\sqrt[4]{y}}\right)=\frac{4}{\sqrt{x}}-\frac{1}{\sqrt{y}}\)

    Đặt \(\sqrt{y}=t.\sqrt{x}\text{ }\left(t>0\right)\)

    Suy ra: \(\frac{2+t}{1+t^2}=4-\frac{1}{t}\Leftrightarrow\left(2t-1\right)\left(2t^2+1\right)=0\Leftrightarrow t=\frac{1}{2}\)

    \(\Rightarrow\sqrt{x}=2\sqrt{y}\)

    Thay vào phương trình đầu của hệ ban đầu:

    \(\sqrt{2\sqrt{y}}\left(\frac{1}{4}+\frac{5\sqrt{y}}{5y}\right)=2\Leftrightarrow\frac{1}{4}+\frac{1}{\sqrt{y}}=\frac{2}{\sqrt{2\sqrt{y}}}\)

    \(\Leftrightarrow\frac{1}{4}+2t^2=2t\text{ với }t=\frac{1}{\sqrt{2\sqrt{y}}}\)

    Tới đây dễ rồi.

    bài lớp mấy đấy khó quá

    chết người hả, đề gì mà trừu tượng ghê ghớm vậy

    2 tháng 4 2016

    Sr!Khó thế này thì có trời mới làm được