Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ĐKXĐ: x ≤ 3.
+x = + 1 ⇔ x = 1. Tập nghiệm S = {1}.
b) ĐKXĐ: x = 2.
Giá trị x = 2 nghiệm đúng phương trình. Tập nghiệm S = {2}.
c) ĐKXĐ: x > 1.
⇔ = 0
=> x = 3 (nhận vì thỏa mãn ĐKXĐ)
x = -3 (loại vì không thỏa mãn ĐKXĐ).
Tập nghiệm S = {3}.
d) xác định với x ≤ 1, xác định với x ≥ 2.
Không có giá trị nào của x nghiệm đúng phương trình.
Do đó phương trình vô nghiệm.
Answer:
b) \(2\sqrt{x+3}=9x^2-x-4\)
ĐK: x\(x\ge-3\) phương trình tương đương:
Ta có: \(2\sqrt{x+3}=9x^2-x-4\)
\(\Leftrightarrow x+4+2\sqrt{x+3}=9x^2\)
\(\Leftrightarrow x+3+2\sqrt{x+3}+1=9x^2\)
\(\Leftrightarrow\left(1+\sqrt{3+x}\right)^2=9x^2\)
\(\left(1+\sqrt{3+x}\right)^2=9x^2\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x+3}+1=3x\\\sqrt{x+3}+1=-3x\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=\frac{-5-\sqrt{97}}{18}\end{cases}}\)
1) ĐK: \(x\ge\frac{3}{2}\)
pt \(\Leftrightarrow\frac{2x-2-\left(6x-9\right)}{\sqrt{2x-2}+\sqrt{6x-9}}=16x^2-28x-20x+35\)
\(\Leftrightarrow\frac{-4x+7}{\sqrt{2x-2}+\sqrt{6x-9}}=4x\left(4x-7\right)-5\left(4x-7\right)\)
\(\Leftrightarrow-\frac{4x-7}{\sqrt{2x-2}+\sqrt{6x-9}}=\left(4x-7\right)\left(4x-5\right)\)
\(\Leftrightarrow\left(4x-7\right)\left(\frac{1}{\sqrt{2x-2}+\sqrt{6x-9}}+4x-5\right)=0\)
\(\Leftrightarrow4x-7=0\Leftrightarrow x=\frac{7}{4}\) (nhận)
2) ĐK: \(2\le x\le4\)
pt \(\Leftrightarrow\sqrt{x-2}+\sqrt{a-x}=2\left(x^2-6x+9\right)+7x-19\)
\(\Leftrightarrow\sqrt{x-2}-\left(7x-20\right)+\sqrt{4-x}-1=2\left(x-3\right)^2\)
\(\Leftrightarrow\frac{x-2-\left(7x-20\right)^2}{\sqrt{x-2}+7x-20}+\frac{4-x-1}{\sqrt{4-x}+1}=2\left(x-3\right)^2\)
\(\Leftrightarrow\frac{\left(x-3\right)\left(134-49x\right)}{\sqrt{x-2}+\left(7x-20\right)}+\frac{3-x}{\sqrt{4-x}+1}=2\left(x-3\right)^2\)
\(\Leftrightarrow x-3=0\Leftrightarrow x=3\) (nhận)
1) ĐK: \(x\ge-1\)
\(\sqrt{9x^2+9x+4}>9x+3-\sqrt{x+1}\)
<=> \(\sqrt{9x^2+9x+4}+\sqrt{x+1}>9x+3\)(1)
TH1: 9x + 3 \(\le\)0 <=> x\(\le-\frac{1}{3}\)
(1) luôn đúng
Th2: x\(>-\frac{1}{3}\)
<=> \(\left(\frac{1}{2}x+1-\sqrt{x+1}\right)+\left(\frac{17}{2}x+2-\sqrt{9x^2+9x+4}\right)< 0\)
<=> \(\frac{\frac{1}{4}x^2}{\frac{1}{2}x+1+\sqrt{x+1}}+\frac{\frac{253}{4}x^2}{\frac{17}{2}x+2+\sqrt{9x^2+9x+4}}< 0\)
<=> \(\frac{x^2}{4}\left(\frac{1}{\frac{1}{2}x+1+\sqrt{x+1}}+\frac{253}{\frac{17}{2}x+2+\sqrt{9x^2+9x+4}}\right)< 0\)vô nghiệm
Vì với x \(>-\frac{1}{3}\):
ta có: \(\frac{1}{2}x+1+\sqrt{x+1}>0\)
\(\frac{17}{2}x+2+\sqrt{9x^2+9x+4}=\frac{17}{2}x+2+\sqrt{3\left(x+\frac{1}{2}\right)^2+\frac{7}{4}}>\frac{17}{2}x+2+1>0\)
=> \(\left(\frac{1}{\frac{1}{2}x+1+\sqrt{x+1}}+\frac{253}{\frac{17}{2}x+2+\sqrt{9x^2+9x+4}}\right)>0\)với x \(>-\frac{1}{3}\) và \(x^2\ge0\)với mọi x
=> \(\frac{x^2}{4}\left(\frac{1}{\frac{1}{2}x+1+\sqrt{x+1}}+\frac{253}{\frac{17}{2}x+2+\sqrt{9x^2+9x+4}}\right)\ge0\)với x\(>-\frac{1}{3}\)
Vậy \(x< -\frac{1}{3}\)
Xin lỗi bạn kết luận bài 1 là:
\(-1\le x\le-\frac{1}{3}\)
Bài 2) \(2+\sqrt{x+2}-x\sqrt{x+2}=x\left(\sqrt{x+2}-x\right)\)(2)
ĐK: \(x\ge-2\)
(2) <=> \(2+\sqrt{x+2}+x^2-2x\sqrt{x+2}=0\)
<=> \(8+4\sqrt{x+2}+4x^2-8x\sqrt{x+2}=0\)
<=> \(\left(2x-1\right)^2-4\left(2x-1\right)\sqrt{x+2}+4\left(x+2\right)-1=0\)
<=> \(\left(2x-1-2\sqrt{x+2}\right)^2-1=0\)
<=> \(\left(x-1-\sqrt{x+2}\right)\left(x-\sqrt{x+2}\right)=0\)
<=> \(\orbr{\begin{cases}x-1=\sqrt{x+2}\left(3\right)\\x=\sqrt{x+2}\left(4\right)\end{cases}}\)
(3) <=> \(\hept{\begin{cases}x\ge1\\x^2-3x-1=0\end{cases}}\Leftrightarrow x=\frac{3+\sqrt{13}}{2}\left(tm\right)\)
(4) <=> \(\hept{\begin{cases}x\ge0\\x^2-x-2=0\end{cases}\Leftrightarrow}x=2\left(tm\right)\)
Kết luận:...
a/ ĐKXĐ: ...
\(\Leftrightarrow4x^2-4x+1-\left(2x-\sqrt{4x-1}\right)=0\)
\(\Leftrightarrow\left(2x-1\right)^2-\frac{\left(2x-1\right)^2}{2x+\sqrt{4x-1}}=0\)
\(\Leftrightarrow\left(2x-1\right)^2\left(1-\frac{1}{2x+\sqrt{4x-1}}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{2}\\2x+\sqrt{4x-1}=1\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow\sqrt{4x-1}=1-2x\) (\(x\le\frac{1}{2}\))
\(\Leftrightarrow4x-1=\left(1-2x\right)^2\)
\(\Leftrightarrow4x-1=4x^2-4x+1\)
\(\Leftrightarrow2x^2-4x+1=0\) \(\Rightarrow\left[{}\begin{matrix}x=\frac{2+\sqrt{2}}{2}\left(l\right)\\x=\frac{2-\sqrt{2}}{2}\end{matrix}\right.\)
b/
Đặt \(3x^2-2x+2=a>0\) ta được:
\(\sqrt{a+7}+\sqrt{a}=7\)
\(\Leftrightarrow2a+7+2\sqrt{a^2+7a}=49\)
\(\Leftrightarrow\sqrt{a^2+7a}=21-a\) (\(a\le21\))
\(\Leftrightarrow a^2+7a=\left(21-a\right)^2\)
\(\Leftrightarrow a^2+7a=a^2-42a+441\)
\(\Rightarrow a=9\Rightarrow3x^2-2x+2=9\)
\(\Leftrightarrow3x^2-2x-7=0\Rightarrow x=\frac{1\pm\sqrt{22}}{3}\)
Lời giải:
ĐKXĐ:........
Bình phương 2 vế ta có:
\(\Rightarrow x+(9-x)+2\sqrt{x(9-x)}=-x^2+9x+9\)
\(\Leftrightarrow 2\sqrt{x(9-x)}=-x^2+9x=x(9-x)\)
\(\Leftrightarrow \sqrt{x(9-x)}(2-\sqrt{x(9-x)})=0\)
\(\Rightarrow \left[\begin{matrix} \sqrt{x}=0(1)\\ \sqrt{9-x}=0(2)\\ 2=\sqrt{x(9-x)}(3)\end{matrix}\right.\)
Với \((1)\Rightarrow x=0\) (t/m)
Với (2)\(\Rightarrow x=9\) (t/m)
Với (3): \(\Rightarrow 4=x(9-x)\)
\(\Leftrightarrow x^2-9x+4=0\)
\(x=\frac{9\pm \sqrt{65}}{2}\) (đều thỏa mãn)
Vậy............
\(\sqrt{x}+\sqrt{9-x}=\sqrt{-x^2+9x+9}\)(ĐK: \(0\le x\le9\))
\(\Leftrightarrow x+9-x+2\sqrt{x\left(9-x\right)}=-x^2+9x+9\)
\(\Leftrightarrow4x\left(9-x\right)=x^2\left(9-x\right)^2\)
\(\Leftrightarrow\orbr{\begin{cases}x\left(9-x\right)=0\\x\left(9-x\right)=4\end{cases}}\)
- \(x\left(9-x\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=9\end{cases}}\).
- \(x\left(9-x\right)=4\Leftrightarrow\orbr{\begin{cases}x=\frac{9+\sqrt{65}}{2}\\x=\frac{9-\sqrt{65}}{2}\end{cases}}\)