Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(\text{ĐK: }....\Leftrightarrow x\le-3\text{ hoặc }x\ge0\)
+TH1: \(x\ge0\)
\(pt\Leftrightarrow\sqrt{x}\left(\sqrt{x+1}+\sqrt{x+2}-\sqrt{x+3}\right)=0\)
\(\Leftrightarrow x=0\text{ hoặc }\sqrt{x+1}+\sqrt{x+2}=\sqrt{x+3}\text{ (1)}\)
\(\left(1\right)\Leftrightarrow x+1+x+2+2\sqrt{\left(x+1\right)\left(x+2\right)}=x+3\)
\(\Leftrightarrow x+2\sqrt{\left(x+1\right)\left(x+2\right)}=0\text{ (vô nghiệm do }x\ge0\text{ nên }x+\sqrt{\left(x+1\right)\left(x+2\right)}>0\text{)}\)
\(+TH2:\text{ }x\le-3\)
\(pt\Leftrightarrow\sqrt{-x}\left(\sqrt{-x-1}+\sqrt{-x-2}-\sqrt{-x-3}\right)=0\)
\(\Leftrightarrow\sqrt{-x-1}+\sqrt{-x-2}=\sqrt{-x-3}\text{ }\left(do\text{ }x\le-3\Rightarrow\sqrt{-x}>\sqrt{3}\right)\)
\(\Leftrightarrow-x-1-x-2+2\sqrt{\left(-x-1\right)\left(-x-2\right)}=-x-3\)
\(\Leftrightarrow2\sqrt{\left(-x-1\right)\left(-x-2\right)}-x=0\text{ (vô nghiệm do }-x\ge3\text{)}\)
Vậy \(x=0\)
b/
\(\text{ĐK: }x\ge1\)
\(\text{Đặt }\sqrt{x-1}=t;\text{ }t\ge0\)
\(pt\text{ thành: }\left(t+1\right)^3+2t+t^2-1=0\)
\(\Leftrightarrow t^3+4t^2+5t=0\Leftrightarrow t\left(t^2+4t+5\right)=0\)
\(\Leftrightarrow t=0\vee t^2+4t+5=0\text{ (Vô nghiệm)}\)
\(pt\text{ đã cho }\Leftrightarrow\sqrt{x-1}=0\Leftrightarrow x=1\)
Điều kiện tự làm nha.
\(\sqrt{x\left(x+1\right)}+\sqrt{x\left(x+2\right)}=\sqrt{x\left(x+3\right)}\)
\(\Leftrightarrow\sqrt{x}\left(\sqrt{x+1}+\sqrt{x+2}-\sqrt{x+3}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}=0\left(1\right)\\\sqrt{x+1}+\sqrt{x+2}-\sqrt{x+3}=0\left(2\right)\end{cases}}\)
\(\Rightarrow\left(2\right)\Leftrightarrow\sqrt{x+1}+\sqrt{x+2}=\sqrt{x+3}\)
\(\Leftrightarrow2x+3+2\sqrt{\left(x+1\right)\left(x+2\right)}=x+3\)
\(\Leftrightarrow2\sqrt{\left(x+1\right)\left(x+2\right)}=-x\)
Tới đây thì bình phương 2 vế rồi giải phương trình bậc 2 nhé
Bài 1:
Đặt \(\hept{\begin{cases}S=x+y\\P=xy\end{cases}}\) hpt thành:
\(\hept{\begin{cases}S^2-P=3\\S+P=9\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}S^2-P=3\\S=9-P\end{cases}}\Leftrightarrow\left(9-P\right)^2-P=3\)
\(\Leftrightarrow\orbr{\begin{cases}P=6\Rightarrow S=3\\P=13\Rightarrow S=-4\end{cases}}\).Thay 2 trường hợp S và P vào ta tìm dc
\(\hept{\begin{cases}x=3\\y=0\end{cases}}\)và\(\hept{\begin{cases}x=0\\y=3\end{cases}}\)
Câu 3: ĐK: \(x\ge0\)
Ta thấy \(x-\sqrt{x-1}=0\Rightarrow x=\sqrt{x-1}\Rightarrow x^2-x+1=0\) (Vô lý), vì thế \(x-\sqrt{x-1}\ne0.\)
Khi đó \(pt\Leftrightarrow\frac{3\left[x^2-\left(x-1\right)\right]}{x+\sqrt{x-1}}=x+\sqrt{x-1}\Rightarrow3\left(x-\sqrt{x-1}\right)=x+\sqrt{x-1}\)
\(\Rightarrow2x-4\sqrt{x-1}=0\)
Đặt \(\sqrt{x-1}=t\Rightarrow x=t^2+1\Rightarrow2\left(t^2+1\right)-4t=0\Rightarrow t=1\Rightarrow x=2\left(tm\right)\)
\(\sqrt{x\left(x-1\right)}+\sqrt{x\left(x+2\right)}=2\sqrt{x^2}\)
\(ĐKXĐ:\orbr{\begin{cases}x\ge1\\x\le-2\end{cases}}\)hoặc x=0
\(\sqrt{x\left(x-1\right)}+\sqrt{x\left(x+2\right)}=2x\)
\(x\left(x-1\right)+x\left(x+2\right)+2x\sqrt{\left(x-1\right)\left(x+2\right)}=4x^2\)
\(x^2-x+x^2+2x+2x\sqrt{x^2+x-2}=4x^2\)
\(2x\sqrt{x^2+x-2}=2x^2-x\)
\(2x\sqrt{x^2+x-2}=2x^2-x\)
\(ĐXKĐ:x\ge\frac{1}{2}\)
\(4x^2\left(x^2+x-2\right)=4x^4-4x^3+x^2\)
\(4x^4+4x^3-8x^2=4x^4-4x^3+x^2\)
\(8x^3-9x^2=0\)
\(x^2\left(8x-9\right)=0\)
\(\orbr{\begin{cases}x^2=0\\8x-9=0\end{cases}\orbr{\begin{cases}x=0\left(TM\right)\\x=\frac{9}{8}\left(TM\right)\end{cases}}}\)
\(\)