K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 8 2019

a) \(A=\frac{-\sqrt{x}+2+4}{\sqrt{x}-2}=-1+\frac{4}{\sqrt{x}-2}\)

Để \(A\in Z\Leftrightarrow\sqrt{x}-2\in\left\{-4;-2;-1;1;2;4\right\}\)

\(\Leftrightarrow\sqrt{x}\in\left\{-2;0;1;3;4;6\right\}\)

\(x\in Z;\sqrt{x}\ge0\Rightarrow x\in\left\{0;1;9;16;36\right\}\)

b)\(A=\frac{4\sqrt{x}-2+3}{2\sqrt{x}-1}=2+\frac{3}{2\sqrt{x}-1}\)

Để \(A\in Z\Leftrightarrow2\sqrt{x}-1\in\left\{-3;-1;1;3\right\}\)

\(\Leftrightarrow2\sqrt{x}\in\left\{-2;0;2;4\right\}\)

\(\Leftrightarrow\sqrt{x}\in\left\{-1;0;1;2\right\}\Leftrightarrow x\in\left\{0;1;4\right\}\)

5 tháng 8 2019

a) A= \(\frac{-\sqrt{x}+6}{\sqrt{x}-2}=\frac{-\sqrt{x}+2+4}{\sqrt{x}-2}=\frac{-\left(\sqrt{x}-2\right)+4}{\sqrt{x}-2}=\frac{4}{\sqrt{x}-2}-1\)

\(\sqrt{x}-2\inƯ\left(4\right)\) ⇒ x = 36

18 tháng 2 2020

Đề hoàn chỉnh đây ạ: Với n > 0, chứng minh rằng \(2\left(\sqrt{n+1}-1\right)< 1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{n}}< 2\sqrt{n}-1\)

Xin lỗi vì sự bất cẩn này!

AH
Akai Haruma
Giáo viên
15 tháng 8 2018

Câu a)

Ta có: \(\sqrt{x^2-2x+1}+\sqrt{x^2-6x+9}=1\)

\(\Leftrightarrow \sqrt{(x-1)^2}+\sqrt{(x-3)^2}=1\)

\(\Leftrightarrow |x-1|+|x-3|=1(*)\)

Xét các TH sau để phá dấu trị tuyệt đối.

Nếu \(x\geq 3\)

\((*)\Leftrightarrow x-1+x-3=1\Rightarrow 2x=5\Rightarrow x=2,5\) (vô lý)

Nếu $x< 1$

\((*)\Leftrightarrow 1-x+3-x=1\rightarrow 2x=3\Rightarrow x=1,5\) (vô lý)

Nếu $1\leq x< 3$

\((*)\Leftrightarrow x-1+3-x=1\Leftrightarrow 2=1\) (vô lý)

Vậy pt vô nghiệm

Hoặc có thể sử dụng BĐT \(|a|+|b|\geq |a+b|\) thì:

\(1=|x-1|+|x-3|=|x-1|+|3-x|\geq |x-1+3-x|=2\) (vô lý nên pt vô nghiệm)

AH
Akai Haruma
Giáo viên
15 tháng 8 2018

Câu b: ĐK: \(x\geq 1\)

\(\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}=2\)

\(\Leftrightarrow \sqrt{(x-1)+2\sqrt{x-1}+1}+\sqrt{(x-1)-2\sqrt{x-1}+1}=2\)

\(\Leftrightarrow \sqrt{(\sqrt{x-1}+1)^2}+\sqrt{(\sqrt{x-1}-1)^2}=2\)

\(\Leftrightarrow |\sqrt{x-1}+1|+|\sqrt{x-1}-1|=2\)

Áp dụng BĐT \(|a|+|b|\geq |a+b|\)

\(\Rightarrow |\sqrt{x-1}+1|+|\sqrt{x-1}-1|=|\sqrt{x-1}+1|+|1-\sqrt{x-1}|\)

\(\geq |\sqrt{x-1}+1+1-\sqrt{x-1}|=2\)

Dấu "=" xảy ra khi \((\sqrt{x-1}+1)(1-\sqrt{x-1})\geq 0\)

\(\Leftrightarrow 1-\sqrt{x-1}\geq 0\)

\(\Leftrightarrow x\leq 2\)

Vậy pt có nghiệm $x$ nằm trong đoạn \([1;2]\)

d: \(a-\sqrt{ab}=\sqrt{a}\left(\sqrt{a}-\sqrt{b}\right)\)

e: \(=\left(\sqrt{x}+1\right)^2\)

i: \(=\left(\sqrt{x}-3\right)\left(x+3\sqrt{x}+9\right)\)

k: \(=\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)\)

NV
5 tháng 7 2020

1/

\(B=\frac{1}{\sqrt{2}}\left(\sqrt{8+2\sqrt{7}}-\sqrt{8-2\sqrt{7}}\right)\)

\(=\frac{1}{\sqrt{2}}\left(\sqrt{7}+1-\sqrt{7}+1\right)=\sqrt{2}\)

\(\Rightarrow B>1\)

\(\left\{{}\begin{matrix}\sqrt[3]{4+\sqrt{7}}< \sqrt[3]{4+\sqrt{16}}=2\\\sqrt[3]{4-\sqrt{7}}>\sqrt[3]{4-\sqrt{9}}=1\end{matrix}\right.\)

\(\Rightarrow A=\sqrt[4]{4+\sqrt{7}}-\sqrt[3]{4-\sqrt{7}}< 2-1=1\)

\(\Rightarrow A< B\)

2/ ĐKXĐ: \(x\ge-3\)

Đặt \(\sqrt{x+3}=a\ge0\) ta được:

\(2x^2+a^2=3ax\Leftrightarrow2x^2-3ax+a^2=0\)

\(\Leftrightarrow\left(x-a\right)\left(2x-a\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=a\\2x=a\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{x+3}\\2x=\sqrt{x+3}\end{matrix}\right.\) (\(x\ge0\))

\(\Leftrightarrow\left[{}\begin{matrix}x^2=x+3\\4x^2=x+3\end{matrix}\right.\) \(\Leftrightarrow...\)

5 tháng 7 2020

Từ chỗ \(\sqrt[3]{4-\sqrt{7}}>1\Rightarrow-\sqrt[3]{4-\sqrt{7}}< -1\) rồi thay vào thì đúng hơn nhỉ :)

(A < 3 < 1 = B)