\(\sqrt{x+\frac{1}{x^2}}+\sqrt{x-\frac{1}{x^2}}=\frac{2}{x}\)

giúp mk vs!tks

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 9 2017

Đặt \(\hept{\begin{cases}\sqrt{x+\frac{1}{x^2}}=a\ge0\\\sqrt{x-\frac{1}{x^2}}=b\ge0\end{cases}}\)

\(\Rightarrow\frac{1}{x}=\sqrt{\frac{a^2-b^2}{2}}\) từ đây ta có

\(\Rightarrow a+b=\sqrt{2\left(a^2-b^2\right)}\)

\(\Leftrightarrow\sqrt{a+b}=\sqrt{2\left(a-b\right)}\)

\(\Leftrightarrow a+b=2\left(a-b\right)\)

\(\Leftrightarrow a=2b\)

\(\Rightarrow\sqrt{x+\frac{1}{x^2}}=2\sqrt{x-\frac{1}{x^2}}\)

\(\Leftrightarrow x+\frac{1}{x^2}=4\left(x-\frac{1}{x^2}\right)\)

\(\Leftrightarrow3x^3=5\)

\(\Leftrightarrow x=\sqrt[3]{\frac{5}{3}}\)

12 tháng 9 2017

Giải nhầm rồi. Giải lại nhé.

\(\sqrt{x+\frac{1}{x^2}}+\sqrt{x-\frac{1}{x^2}}=\frac{2}{x}\)

\(\Leftrightarrow\sqrt{\frac{x^3+1}{x^2}}+\sqrt{\frac{x^3-1}{x^2}}=\frac{2}{x}\)

\(\Leftrightarrow\sqrt{x^3+1}+\sqrt{x^3-1}=2\)

Đặt \(\hept{\begin{cases}\sqrt{x^3+1}=a\ge0\\\sqrt{x^3-1}=b\ge0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}a+b=2\\a^2-b^2=2\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a=\frac{3}{2}\\b=\frac{1}{2}\end{cases}}\)

\(\Rightarrow x=\sqrt[3]{\frac{5}{4}}\)

6 tháng 7 2017

a. ĐK \(x\ge0\)và \(x\ne1\)

A =\(\left(\frac{\sqrt{x}+1}{\sqrt{x}-1}+\frac{\sqrt{x}}{\sqrt{x}+1}+\frac{\sqrt{x}}{1-\sqrt{x}}\right):\left(\frac{\sqrt{x}+1}{\sqrt{x}-1}+\frac{1-\sqrt{x}}{\sqrt{x}+1}\right)\)

\(=\frac{\left(\sqrt{x}+1\right)^2+\sqrt{x}\left(\sqrt{x}-1\right)-\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}:\frac{\cdot\left(\sqrt{x}+1\right)^2+\left(\sqrt{x}-1\right)\left(1-\sqrt{x}\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

\(=\frac{x+2\sqrt{x}+1+x-\sqrt{x}-x-\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}.\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{x+2\sqrt{x}+1+\sqrt{x}-x-1+\sqrt{x}}\)

\(=\frac{x+1}{4\sqrt{x}}\)

b. Thay \(x=\frac{2-\sqrt{3}}{2}\Rightarrow A=\frac{\frac{2-\sqrt{3}}{2}+1}{4\sqrt{\frac{2-\sqrt{3}}{2}}}=\frac{4-\sqrt{3}}{4\left(\sqrt{3}-1\right)}=\frac{4-\sqrt{3}}{4-4\sqrt{3}}=-\frac{1+3\sqrt{3}}{8}\)

c . Ta có \(A-\frac{1}{2}=\frac{x+1}{4\sqrt{x}}-\frac{1}{2}=\frac{x-2\sqrt{x}+1}{4\sqrt{x}}=\frac{\left(\sqrt{x}-1\right)^2}{4\sqrt{x}}>0\)với \(\forall x>0\)và \(x\ne1\)

Vậy A >1/2

30 tháng 10 2020

\(\frac{1}{2\sqrt{x}-2}-\frac{1}{2\sqrt{x}+2}+\frac{\sqrt{x}}{1-x}\)

ĐKXĐ : \(\hept{\begin{cases}x\ge0\\x\ne1\end{cases}}\)

\(=\frac{1}{2\left(\sqrt{x}-1\right)}-\frac{1}{2\left(\sqrt{x}+1\right)}-\frac{\sqrt{x}}{x-1}\)

\(=\frac{\sqrt{x}+1}{2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{\sqrt{x}-1}{2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{2\sqrt{x}}{2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\frac{\sqrt{x}+1-\sqrt{x}+1-2\sqrt{x}}{2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\frac{-2\sqrt{x}+2}{2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\frac{-2\left(\sqrt{x}-1\right)}{2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{-1}{\sqrt{x}+1}\)

2 tháng 3 2020

mình làm nốt câu còn lại ok

b) ta thấy x = 0 không là nghiệm của phương trình

chia cả 2 vế cho x khác 0, ta được :

\(\left(x-\frac{1}{x}\right)+\sqrt[3]{x-\frac{1}{x}}=2\)

đặt \(t=\sqrt[3]{x-\frac{1}{x}}\)

Ta có : \(t^3+t-2=0\Leftrightarrow\left(t-1\right)\left(t^2+t+2\right)=0\Leftrightarrow t=1\)

Khi đó : \(\sqrt[3]{x-\frac{1}{x}}=1\Leftrightarrow x-\frac{1}{x}=1\Leftrightarrow x=\frac{1\pm\sqrt{5}}{2}\)

Vậy ...

2 tháng 3 2020

a) Từ phương trình đã cho ta có: \(x\ge0\)

Rõ ràng x=0 không thỏa mãn phương trình đã cho nên x>0

Nhân với liên hợp của vế trái ta được:

\(\sqrt{2x^2+x+1}-\sqrt{x^2-x+1}=\frac{x+2}{3}\)

Kết hợp với phương trình đã cho ta có:

\(\sqrt{2x^2+x+1}=\frac{5x+1}{3}\)

Giải phương trình này được nghiệm \(x=\frac{-19+3\sqrt{65}}{14}\)