\(\sqrt{x+3}\) X^4 = 2x^4 - 2016x + 2016 giai phuong trinh

 

 

 

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 11 2018

\(ĐK:x\ge2\)

\(x^2-5x+4=2\sqrt{2x-4}\)

<=>\(x^2-5x+4=2\sqrt{2\left(x-2\right)}\)

<=>\(x^2-5x+4+x-2+2=\left(x-2\right)+2\sqrt{2\left(x-2\right)}+2\)

<=>\(x^2-4x+4=\left(\sqrt{x-2}+2\right)^2\)

<=>\(\left(x-2\right)^2=\left(\sqrt{x-2}+2\right)^2\)

<=> \(\left(x-2-\sqrt{x-2}-2\right)\left(x-2+\sqrt{x-2}+2\right)=0\)

<=>\(\left(x-\sqrt{x-2}-4\right)\left(x+\sqrt{x-2}\right)=0\)

Xét \(x-\sqrt{x-2}-4=0\)

<=>\(x^2-8x+16=x-2\)

<=>\(x^2-9x+18=0\)

=> x=6;3(nhận)

Xet1\(x+\sqrt{x-2}=0\)

Do x\(\ge2\)=> pt vô nghiệm

Vậy ...

24 tháng 5 2019

ĐKXĐ :  \(-4\le x\le4\)

TA CÓ : \(\left(\sqrt{x+4}-2\right)\left(\sqrt{4-x}+2\right)=2x\)

\(\Leftrightarrow\left[\left(\sqrt{x+4}-2\right)\left(\sqrt{x+4}+2\right)\right]\left(\sqrt{4-x}+2\right)=2x\left(\sqrt{x+4}+2\right)\)

\(\Leftrightarrow\left[x+4-4\right]\left(\sqrt{4-x}+2\right)-2x\left(\sqrt{x+4}+2\right)=0\)

\(\Leftrightarrow x\left(\sqrt{4-x}+2\right)-2x\left(\sqrt{x+4}+2\right)=0\)

\(\Leftrightarrow x\left[\sqrt{4-x}+2-2\sqrt{x+4}-4\right]=0\)

\(\Leftrightarrow x=0\)HOẶC  \(\sqrt{4-x}-2\sqrt{x+4}-2=0\)

VỚI \(\sqrt{4-x}-2\sqrt{x+4}-2=0\)

\(\Leftrightarrow\sqrt{4-x}-2=2\sqrt{x+4}\)

\(\Leftrightarrow4-x+4-4\sqrt{4-x}=4x+16\)

\(\Leftrightarrow8-x-4x-16=4\sqrt{4-x}\)

\(\Leftrightarrow-5x-8=4\sqrt{4-x}\)ĐK : \(-4\le x\le\frac{-8}{5}\)

\(\Leftrightarrow\left[-\left(5x+8\right)\right]^2=16\left(4-x\right)\)

\(\Leftrightarrow25x^2+64+80x=64-16x\)

\(\Leftrightarrow25x^2+96x=0\Leftrightarrow x\left(25x+96\right)=0\)

\(\Leftrightarrow x=0\)HOẶC \(x=\frac{-96}{25}\)(THỎA MÃN ĐK )                                                                               

                                                                                               VẬY PT CÓ 2 NGHIỆM \(x\in\left[0;\frac{-96}{25}\right]\)

P/S : CÁCH CỦA MÌNH KHÁ DÀI VÀ CHI TIẾT QUÁ . BẠN CÓ THỂ THAM KHẢO CÁCH KHÁC NHANH HƠN :>

NV
4 tháng 3 2019

a/ \(\left(2x\right)^2-2.2x.3+3^2-16=0\)

\(\Leftrightarrow\left(2x-3\right)^2=16\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-3=4\\2x-3=-4\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}2x=7\\2x=-1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\dfrac{7}{2}\\x=\dfrac{-1}{2}\end{matrix}\right.\)

b/ \(x^2+2\sqrt{3}.x+\left(\sqrt{3}\right)^2-4=0\)

\(\Leftrightarrow\left(x+\sqrt{3}\right)^2=4\)

\(\Leftrightarrow\left[{}\begin{matrix}x+\sqrt{3}=2\\x+\sqrt{3}=-2\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=2-\sqrt{3}\\x=-2-\sqrt{3}\end{matrix}\right.\)

c/ \(3x^2-6x+3-2=0\)

\(\Leftrightarrow3\left(x^2-2x+1\right)=2\)

\(\Leftrightarrow\left(x-1\right)^2=\dfrac{2}{3}\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=\dfrac{\sqrt{6}}{3}\\x-1=\dfrac{-\sqrt{6}}{3}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\dfrac{3+\sqrt{6}}{3}\\x=\dfrac{3-\sqrt{6}}{3}\end{matrix}\right.\)

d/ \(\left(\sqrt{2}x\right)^2-2.2.\left(\sqrt{2}x\right)+2^2-2=0\)

\(\Leftrightarrow\left(\sqrt{2}x-2\right)^2=2\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{2}x-2=\sqrt{2}\\\sqrt{2}x-2=-\sqrt{2}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\sqrt{2}x=2+\sqrt{2}\\\sqrt{2}x=2-\sqrt{2}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\sqrt{2}+1\\x=\sqrt{2}-1\end{matrix}\right.\)

4 tháng 3 2019

Hộp thư của chị có vấn đề rồi, không đọc được tin nhắn TvT

8 tháng 6 2017

Đặt \(\sqrt{x^2+3}=a\ge\sqrt{3}\) (1)

pt \(\Leftrightarrow\left(a^2-3\right)^2+a-3=0\)

\(\Leftrightarrow a^4+9-6a^2+a-3=0\)

\(\Leftrightarrow a^4-4a^2-2a^2+4a-3a+6=0\)

\(\Leftrightarrow\left(a-2\right)\left(a^3+2a^2-2a-3=0\right)\)

\(\Leftrightarrow\left(a-2\right)\left(a^3+a^2+a^2+a-3a-3\right)=0\)

\(\Leftrightarrow\left(a-2\right)\left(a+1\right)\left(a^2+a-3\right)=0\)

\(\Leftrightarrow\left(a-2\right)\left(a+1\right)\left[\left(a+\dfrac{1}{2}\right)^2-\dfrac{13}{4}\right]=0\)

\(\Rightarrow\left[{}\begin{matrix}a-2=0\\a+1=0\\\left(a+\dfrac{1}{2}\right)^2-\dfrac{13}{4}=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}a=2\left(c\right)\\a=-1\left(l\right)\\a=\dfrac{-1+\sqrt{13}}{2}\left(l\right)\\a=\dfrac{-1-\sqrt{13}}{2}\left(l\right)\end{matrix}\right.\)

Thay a = 2 vào (1) ta được: \(\sqrt{x^2+3}=2\Rightarrow x^2+3=4\)

\(\Rightarrow x^2=1\Rightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)

Vậy ...

8 tháng 6 2017

Vây phương trình có nghiêm là x=1 hay x=-1Căn bậc hai

12 tháng 9 2018

\(\sqrt{5-x^6}=\sqrt[3]{3x^4-2}+1\) 

Xét \(\left|x\right|=1\Leftrightarrow\sqrt{5-1}=\sqrt[3]{3-2}+1\)(đúng) 

\(\Rightarrow\orbr{\begin{cases}x=1\\x=-1\end{cases}}\) 

Xét \(\left|x\right|>1\Rightarrow\sqrt{5-x^6}< \sqrt[3]{3x^4-2}+1\)(loại) 

Xét \(\left|x\right|< 1\Rightarrow\sqrt{5-x^6}>\sqrt[3]{3x^4-2}+1\)(loại) 

Vậy Pt có nghiệm (1;-1)

18 tháng 6 2017

đặt t = \(\sqrt[3]{2x-1}\) nên 1 = 2x - t3.

pt: x3 + 2x - t3 = 2t hay (x3 - t3) +2(x - t) = 0.

hay (x - t)(x2 + xt + t2 + 2) = 0.

* nếu x - t = 0 hay x = \(\sqrt[3]{2x-1}\)(tự giải nhé).

* x2 + xt + t2 + 2 = 0. (1)

vì x \(\ge\)\(\frac{1}{2}\)(đk) và t \(\ge\) 0 nên (1) vô nghiệm.

vậy ....