![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) x -\(\sqrt{2x-9}=0\) ĐKXĐ: x\(\ge\frac{9}{2}\)
<=> x=\(\sqrt{2x-9}\)
<=> x2=2x-9 (vì x>0)
<=> x2-2x+1=8
<=>(x-1)2=8
<=>\(\left[{}\begin{matrix}x-1=2\sqrt{2}\\x-1=-2\sqrt{2}\end{matrix}\right.\)
<=>x=\(2\sqrt{2}+1\)(vì x>0) (thỏa mãn)
![](https://rs.olm.vn/images/avt/0.png?1311)
d) \(\sqrt{x+1}+2=0\)( ko tìm đc )
e) \(9x^2=4\Leftrightarrow x^2=\frac{4}{9}\Leftrightarrow x=\pm\sqrt{\frac{4}{9}}\)
g) \(2x^2=\frac{9}{50}\Leftrightarrow x^2=\frac{9}{100}\Leftrightarrow x=\pm\sqrt{\frac{9}{100}}\)
z) \(3-2x=1\Leftrightarrow2x=2\Leftrightarrow x=1\)
y) \(\Leftrightarrow\sqrt{x}\left(1-\sqrt{x}\right)=0\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x}=0\\1-\sqrt{x}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
![](https://rs.olm.vn/images/avt/0.png?1311)
1) đk: \(x\ge1\)
Ta có: \(\sqrt{x-1}-\sqrt{2x\left(x-1\right)}=0\)
\(\Leftrightarrow\sqrt{x-1}=\sqrt{2x\left(x-1\right)}\)
\(\Leftrightarrow x-1=2x^2-2x\)
\(\Leftrightarrow2x^2-3x+1=0\)
\(\Leftrightarrow\left(2x^2-2x\right)-\left(x-1\right)=0\)
\(\Leftrightarrow\left(2x-1\right)\left(x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\left(ktm\right)\\x=1\left(tm\right)\end{cases}}\)
Vậy x = 1
2) đk: \(x\ge\frac{1}{2}\)
Ta có: \(\sqrt{5x^2}=2x-1\)
\(\Leftrightarrow5x^2=\left(2x-1\right)^2\)
\(\Leftrightarrow5x^2=4x^2-4x+1\)
\(\Leftrightarrow x^2+4x-1=0\)
\(\Leftrightarrow\left(x+2\right)^2-5=0\)
\(\Leftrightarrow\left(x+2-\sqrt{5}\right)\left(x+2+\sqrt{5}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-2+\sqrt{5}\left(ktm\right)\\x=-2-\sqrt{5}\left(ktm\right)\end{cases}}\)
=> PT vô nghiệm
3) đk: \(x\ge-1\)
Ta có: \(\sqrt{x+1}+\sqrt{9x+9}=4\)
\(\Leftrightarrow\sqrt{x+1}+3\sqrt{x+1}=4\)
\(\Leftrightarrow4\sqrt{x+1}=4\)
\(\Leftrightarrow x+1=1\)
\(\Rightarrow x=0\)
4) đk: \(x\ge2\)
Ta có: \(\sqrt{x-2}-\sqrt{x\left(x-2\right)}=0\)
\(\Leftrightarrow\sqrt{x-2}=\sqrt{x\left(x-2\right)}\)
\(\Leftrightarrow x-2=x\left(x-2\right)\)
\(\Leftrightarrow x\left(x-2\right)-\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\left(ktm\right)\\x=2\left(tm\right)\end{cases}}\)
Vậy x = 2
6) đk: \(x\ge-\frac{7}{5}\)
Ta có: \(\frac{\sqrt{2x-3}}{\sqrt{x-1}}=2\)
\(\Leftrightarrow\frac{2x-3}{x-1}=2\)
\(\Leftrightarrow2x-3=2x-2\)
\(\Leftrightarrow0x=1\) vô lý
=> PT vô nghiệm
![](https://rs.olm.vn/images/avt/0.png?1311)
I) xd mọi x
\(\sqrt{x^2-8x+16}+\sqrt{x^2-10x+25}=9\)
\(\sqrt{\left(x-4\right)^2}+\sqrt{\left(x-5\right)^2}=9=>\left|x-4\right|+\left|x-5\right|=9\)
\(\left[{}\begin{matrix}x< 4\Rightarrow4-x+5-x=>x=0\left(n\right)\\4\le x< 5\Rightarrow x-4+5-x=9\left(vn\right)\\x\ge5\Rightarrow x-4+x-5=9\Rightarrow x=9\left(n\right)\\\end{matrix}\right.\)
kết luận
\(\left[{}\begin{matrix}x=0\\x=9\end{matrix}\right.\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\sqrt{x^2-2x+1}+\sqrt{x^2-4x+4}=3\Leftrightarrow\sqrt{\left(x-1\right)^2}+\sqrt{\left(x-2\right)^2}=3\Leftrightarrow\left|x-1\right|+\left|x-2\right|=3\) \(+,x\ge2\Rightarrow\left\{{}\begin{matrix}x-2\ge0\\x-1\ge1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\left|x-2\right|=x-2\\\left|x-1\right|=x-1\end{matrix}\right.\Rightarrow\left|x-2\right|+\left|x-1\right|=x-2+x-1=3\Leftrightarrow2x-3=3\Leftrightarrow x=3\left(\text{t/m}\right)\) \(+,1\le x< 2\Rightarrow\left\{{}\begin{matrix}x-1\ge0\\x-2< 0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\left|x-1\right|=x-1\\\left|x-2\right|=-\left(x-2\right)=2-x\end{matrix}\right.\Rightarrow\left|x-1\right|+\left|x-2\right|=x-1+2-x=1\left(l\right)\) \(+,x< 1\Rightarrow\left\{{}\begin{matrix}x-1< 0\\x-2< 0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\left|x-1\right|=-\left(x-1\right)=1-x\\\left|x-2\right|=-\left(x-2\right)=2-x\end{matrix}\right.\Rightarrow\left|x-1\right|+\left|x-2\right|=1-x+2-x=3\Leftrightarrow3-2x=3\Leftrightarrow x=0\left(\text{t/m}\right)\) \(f,\left\{{}\begin{matrix}\sqrt{x^2-9}\ge0\\\sqrt{x^2-6x+9}\ge0\end{matrix}\right.mà:\sqrt{x^2-9}+\sqrt{x^2-6x+9}=0\Rightarrow\left\{{}\begin{matrix}\sqrt{x^2-9}=0\\\sqrt{x^2-6x+9}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x^2-9=0\\\sqrt{\left(x-3\right)^2}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x^2-9=0\\\left|x-3\right|=0\end{matrix}\right.\Leftrightarrow x=3\)\thay vào ta thấy thoa man => x=3
\(ĐK:x\ge4\)\(\sqrt{x^2+x-20}=\sqrt{x^2+5x-4x-20}=\sqrt{x\left(x+5\right)-4\left(x+5\right)}=\sqrt{\left(x-4\right)\left(x+5\right)}=\sqrt{x-4}.\sqrt{x+5}=\sqrt{x-4}\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-4}=0\\\sqrt{x+5}=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x+5=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\left(tm\right)\\x=-4\left(l\right)\end{matrix}\right.\Rightarrow x=4\) \(b,ĐK:x\le2;\sqrt{x+1}+\sqrt{2-x}=\sqrt{6}\Leftrightarrow x+1+2-x+2\sqrt{\left(x+1\right)\left(2-x\right)}=6\Leftrightarrow3+2\sqrt{\left(x+1\right)\left(2-x\right)}=6\Leftrightarrow2\sqrt{\left(x+1\right)\left(2-x\right)}=3\Leftrightarrow\sqrt{\left(x-1\right)\left(2-x\right)}=1,5\Leftrightarrow\left(x-1\right)\left(2-x\right)=\frac{9}{4}\Leftrightarrow\left(x-1\right)\left(x-2\right)=-\frac{9}{4}\Leftrightarrow x^2-3x+2=-\frac{9}{4}\Leftrightarrow x^2-3x+\frac{9}{4}=-2\Leftrightarrow\left(x-\frac{3}{2}\right)^2=-2\Rightarrow vonghiem\)
![](https://rs.olm.vn/images/avt/0.png?1311)
1.
\(x+4\sqrt{x}+3=0\left(ĐK:x\ge0\right)\\ \Leftrightarrow x+\sqrt{x}+3\sqrt{x}+3=0\\ \Leftrightarrow\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)=0\\ \Rightarrow x\in\varnothing\)
2.
\(x^2+3x\sqrt{x}+2x=0\left(ĐK:x\ge0\right)\\ \Leftrightarrow x^2+x\sqrt{x}+2x\sqrt{x}+2x=0\\ \Leftrightarrow x\sqrt{x}\left(\sqrt{x}+1\right)+2x\left(\sqrt{x}+1\right)=0\\ \Leftrightarrow x\left(\sqrt{x}+2\right)\left(\sqrt{x}+1\right)=0\\ \Leftrightarrow x=0\)
3.
\(x+2\sqrt{x}-8=0\\ \Leftrightarrow x-2\sqrt{x}+4\sqrt{x}-8=0\\ \Leftrightarrow\sqrt{x}\left(\sqrt{x}-2\right)+4\left(\sqrt{x}-2\right)=0\\ \Leftrightarrow\left(\sqrt{x}+4\right)\left(\sqrt{x}-2\right)=0\\ \Leftrightarrow\sqrt{x}-2=0\\ \Leftrightarrow x=4\)
4.
\(x+\sqrt{9x}-\sqrt{100}=0\left(ĐK:x\ge0\right)\\ \Leftrightarrow x+3\sqrt{x}-10=0\\ \Leftrightarrow x+5\sqrt{x}-2\sqrt{x}-10=0\\ \Leftrightarrow\left(\sqrt{x}+5\right)\left(\sqrt{x}-2\right)=0\\ \Leftrightarrow\sqrt{x}-2=0\\ \Leftrightarrow x=4\)
5.
\(x+\sqrt{3x}-\sqrt{2x}-\sqrt{6}=0\left(ĐK:x\ge0\right)\\ \Leftrightarrow\sqrt{x}\left(\sqrt{x}+\sqrt{3}\right)-\sqrt{2}\left(\sqrt{x}+\sqrt{3}\right)=0\\ \Leftrightarrow\left(\sqrt{x}+3\right)\left(\sqrt{x}-\sqrt{2}\right)=0\\ \Leftrightarrow\sqrt{x}-\sqrt{2}=0\Leftrightarrow x=2\)
6.
\(\sqrt{5x}-x-\sqrt{15}+\sqrt{3x}=0\left(ĐK:x\ge0\right)\\ \Leftrightarrow\sqrt{x}\left(\sqrt{5}-\sqrt{x}\right)-\sqrt{3}\left(\sqrt{5}-\sqrt{x}\right)=0\\ \Leftrightarrow\left(\sqrt{x}-\sqrt{3}\right)\left(\sqrt{5}-\sqrt{x}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}\sqrt{x}-\sqrt{3}=0\\\sqrt{5}-\sqrt{x}=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=3\\x=5\end{matrix}\right.\)