Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) \(\sqrt{4x}-\sqrt{9x}+\sqrt{25x}=2\sqrt{x}-3\sqrt{x}+5\sqrt{x}=4\sqrt{x}\)
c,C= \(\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}\left(x\ge1\right)\)
=\(\sqrt{x-1+2\sqrt{x-1}+1}+\sqrt{x-1-2\sqrt{x-1}+1}\)
=\(\sqrt{x-1}+1+\left|\sqrt{x-1}-1\right|\) (1)
TH1: \(\sqrt{x-1}< 1\) hay \(1\le x< 2\)
Từ (1)=>C= \(\sqrt{x-1}+1+1-\sqrt{x-1}\)=2
TH2: \(\sqrt{x-1}\ge1\) hay \(x\ge2\)
Từ (1) =>C=\(\sqrt{x-1}+1+\sqrt{x-1}-1\)=\(2\sqrt{x-1}\)
d, D=\(\sqrt{13+30\sqrt{2}+\sqrt{9+4\sqrt{2}}}=\sqrt{13+30\sqrt{2}+\sqrt{8+2\sqrt{8}+1}}=\sqrt{13+30\sqrt{2}+\sqrt{\left(\sqrt{8}+1\right)^2}}\)
=\(\sqrt{13+30\sqrt{2}+\sqrt{8}+1}=\sqrt{14+30\sqrt{2}+2\sqrt{2}}\)
=\(\sqrt{14+32\sqrt{2}}\)
a)\(\frac{x-y}{\sqrt{x}-\sqrt{y}}=\frac{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x}-\sqrt{y}}=\sqrt{x}+\sqrt{y}\)
b)\(\frac{x-2\sqrt{x}+1}{\sqrt{x}-1}=\frac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}-1}=\sqrt{x}-1\)
a: \(=\sqrt{3}+1-\sqrt{3}=1\)
b: \(=\sqrt{\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}+1\right)^2}}=\dfrac{\left|\sqrt{x}-1\right|}{\sqrt{x}+1}\)
c: Sửa đề:\(\dfrac{x-1}{\sqrt{y}-1}\cdot\sqrt{\dfrac{y-2\sqrt{y}+1}{\left(x-1\right)^4}}\)
\(=\dfrac{x-1}{\sqrt{y}-1}\cdot\dfrac{\sqrt{y}-1}{\left(x-1\right)^2}=\dfrac{1}{\left(x-1\right)}\)
a) \(\sqrt{\frac{x-2\sqrt{x}+1}{x+2\sqrt{x}+1}}=\sqrt{\frac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}+1\right)^2}}=\frac{\left|\sqrt{x}-1\right|}{\sqrt{x}+1}\)
b) \(\frac{x-1}{\sqrt{y}-1}\cdot\sqrt{\frac{\left(y-2\sqrt{y}+1\right)^2}{\left(x-1\right)^4}}=\frac{x-1}{\sqrt{y}+1}\cdot\sqrt{\frac{\left(\sqrt{y}-1\right)^4}{\left(x-1\right)^4}}=\frac{x-1}{\sqrt{y}+1}\cdot\frac{\left(\sqrt{y}-1\right)^2}{\left(x-1\right)^2}=\frac{\sqrt{y}-1}{x-1}\)
a)\(\sqrt{\frac{x-2\sqrt{x}+1}{x+2\sqrt{x}+1}}=\sqrt{\frac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}+1\right)^2}}=\frac{\sqrt{\left(\sqrt{x}-1\right)^2}}{\sqrt{\left(\sqrt{x+1}\right)^2}}=\frac{\sqrt{x}-1}{\sqrt{x}+1}\)
b)\(\frac{x-1}{\sqrt{y}-1}\sqrt{\frac{\left(y-2\sqrt{y}+1\right)^2}{\left(x-1\right)^4}}=\frac{x-1}{\sqrt{y}-1}\cdot\frac{\sqrt{\left(\sqrt{y}-1\right)^{2^2}}}{\sqrt{\left(x-1\right)^4}}=\frac{x-1}{\sqrt{y}-1}\cdot\frac{\left(\sqrt{y}-1\right)^2}{\left(x-1\right)^2}=\frac{\sqrt{y}-1}{x-1}\)
Mình cũng không biết đề bài bạn cho đã đủ chưa nên mình chỉ làm nhưng gì mình biết nhé =)
Với \(x\ge2\)ta có
\(\sqrt{x+2\sqrt{x-1}}-\sqrt{x-2\sqrt{x-1}}\)
\(=\sqrt{\left(x-1\right)+2\sqrt{x-1}+1}-\sqrt{\left(x-1\right)-2\sqrt{x-1}+1}\)
\(=\sqrt{\left(\sqrt{x-1}+1\right)^2}-\sqrt{\left(\sqrt{x-1}-1\right)^2}\)
\(=\left|\sqrt{x-1}+1\right|-\left|\sqrt{x-1}-1\right|\)
\(=\)\(\sqrt{x-1}+1-\sqrt{x-1}+1\)(ví với \(x\ge2\)\(\Rightarrow x-1\ge1\Rightarrow\sqrt{x-1}\ge1\Rightarrow\sqrt{x-1}-1\ge0\))
\(=2\)