Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3\sqrt{2x-1}=2x-5\)
\(5\sqrt{x-2}=x+2\)
\(\sqrt{x+2}-\sqrt{2x-10}=1\)
Giải pt dùm mình nha. thanks
a/ \(\Leftrightarrow9\left(2x-1\right)=\left(2x-5\right)^2\) (\(x\ge\frac{5}{2}\))
\(\Leftrightarrow4x^2-38x+34=0\)
\(\Rightarrow\left[{}\begin{matrix}x=1\left(l\right)\\x=\frac{17}{2}\end{matrix}\right.\)
b/ \(\Leftrightarrow25\left(x-2\right)=\left(x+2\right)^2\) (\(x\ge-2\))
\(\Leftrightarrow x^2-21x+54=0\)
\(\Rightarrow\left[{}\begin{matrix}x=3\\x=18\end{matrix}\right.\)
c/ ĐKXĐ: \(x\ge5\)
\(\Leftrightarrow\sqrt{x+2}=\sqrt{2x-10}+1\)
\(\Leftrightarrow x+2=2x-10+1+2\sqrt{2x-10}\)
\(\Leftrightarrow2\sqrt{2x-10}=11-x\) (\(x\le11\))
\(\Leftrightarrow4\left(2x-10\right)=\left(11-x\right)^2\)
\(\Leftrightarrow x^2-30x+161=0\)
\(\Rightarrow\left[{}\begin{matrix}x=7\\x=23\left(l\right)\end{matrix}\right.\)
5) \(ĐK:x\ge-\frac{3}{2}\)
\(x^3+4x-\left(2x+7\right)\sqrt{2x+3}=0\)
\(\Leftrightarrow\frac{x^3+4x}{2x+7}=\sqrt{2x+3}\Leftrightarrow\frac{x^3+4x}{2x+7}-3=\sqrt{2x+3}-3\)
\(\Leftrightarrow\frac{\left(x-3\right)\left(x^2+3x+7\right)}{2x+7}=\frac{2\left(x-3\right)}{\sqrt{2x+3}+3}\)
\(\Leftrightarrow\left(x-3\right)\left(\frac{x^2+3x+7}{2x+7}-\frac{2}{\sqrt{2x+3}+3}\right)=0\)
(không có nghiệm thực)
Vậy phương trình có 1 nghiệm duy nhất là 3
1) \(Pt\Leftrightarrow-x^2-3x+10=3\sqrt{x^2+3x}\)( đk: \(x\le-3,x\ge0\)
Đặt \(t=\sqrt{x^2+3x},t\ge0\)
Pt trở thành: \(-t^2-3t+10=0\Leftrightarrow t=2\left(dot\ge0\right)\)
giải \(\sqrt{x^2+3x}=2\Leftrightarrow\orbr{\begin{cases}x=1\\x=-4\end{cases}}\)
Ko chắc nhá, lúc làm chả biết có tính nhầm chỗ nào ko nữa:) Vả lại bài này chưa khảo lại bài đâu đấy, lười khảo lại lắm, đăng lên luôn.
a) ĐK: \(x\ge-\frac{1}{4}\)
PT \(\Leftrightarrow4x^2+4x+1-2\sqrt{4x+1}+1=0\)
\(\Leftrightarrow4x^2+\left(\sqrt{4x+1}-1\right)^2=0\)
b) ĐK: \(x\ge-\frac{1}{2}\)
PT \(\Leftrightarrow\left(x^2-8x+16\right)+2x+1-6\sqrt{2x+1}+9=0\)
\(\Leftrightarrow\left(x-4\right)^2+\left(\sqrt{2x+1}-3\right)^2=0\)
c) ĐK: \(x\ge-1\)
PT có một nghiệm xấu @@ chưa nghĩ ra, có lẽ phải dùng liên hợp.
d) Số bự quá:( Nhưng thôi vì nghiệm đẹp nên vẫn làm:D
\(PT\Leftrightarrow\left(x^2-2x+1\right)+\left(2017x-2016-2\sqrt{2017x-2016}+1\right)=0\)
\(\Leftrightarrow\left(x-1\right)^2+\left(\sqrt{2017x-2016}-1\right)^2=0\)
e)Nghiệm đẹp nhưng dạng phân thức -> ko muốn làm:D
f) Liên hợp đi cho nó khỏe:v
f) Liên hợp đi cho nó khỏe:D
ĐK: \(x\ge\frac{1}{5}\)
PT \(\Leftrightarrow2x^2-6x+4+\left(x+1\right)-\sqrt{5x-1}=0\)
\(\Leftrightarrow2\left(x-2\right)\left(x-1\right)+\frac{\left(x-2\right)\left(x-1\right)}{x+1+\sqrt{5x-1}}=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-1\right)\left[2+\frac{1}{x+1+\sqrt{5x-1}}\right]=0\)
Cái ngoặc to nhìn liếc qua một phát cũng thấy nó vô nghiệm.
a)\(\sqrt{x^2-2x+1}+\sqrt{x^2-4x+4}=3\)
\(\Leftrightarrow\sqrt{\left(x-1\right)^2}+\sqrt{\left(x-2\right)^2}=3\)
\(\Leftrightarrow\left|1-x\right|+\left|x-2\right|=3\)
Có: \(VT=\left|1-x\right|+\left|x-2\right|\)
\(\ge\left|1-x+x-2\right|=3=VP\)
Khi \(x=0;x=3\)
b)\(\sqrt{x^2-10x+25}=3-19x\)
\(\Leftrightarrow\sqrt{\left(x-5\right)^2}=3-19x\)
\(\Leftrightarrow\left|x-5\right|=3-19x\)
\(\Leftrightarrow x^2-10x+25=361x^2-114x+9\)
\(\Leftrightarrow-360x^2+104x+16=0\)
\(\Leftrightarrow-5\left(5x-2\right)\left(9x+1\right)=0\)
\(\Rightarrow x=\frac{2}{5};x=-\frac{1}{9}\)
c)\(\sqrt{2x-2+2\sqrt{2x-3}}+\sqrt{2x+13+8\sqrt{2x-3}}=5\)
\(\Leftrightarrow\sqrt{2x-3+2\sqrt{2x-3}+1}+\sqrt{2x-3+8\sqrt{2x-3}+16}=5\)
\(\Leftrightarrow\sqrt{\left(\sqrt{2x-3}+1\right)^2}+\sqrt{\left(\sqrt{2x-3}+4\right)^2}=5\)
\(\Leftrightarrow\left|\sqrt{2x-3}+1\right|+\left|\sqrt{2x-3}+4\right|=5\)
\(\Leftrightarrow2\sqrt{2x-3}+5=5\)\(\Leftrightarrow\sqrt{2x-3}=0\Leftrightarrow x=\frac{3}{2}\)
\(\sqrt{x+2+3\sqrt{2x-5}}+\sqrt{x-2-2\sqrt{2x-5}}=2\sqrt{2}\)
nhân 2 vế với căn 2 ta có
\(\sqrt{2x+4+6\sqrt{2x-5}}+\sqrt{2x-4-2\sqrt{2x-5}}=4\)
<=>\(\sqrt{\left(\sqrt{2x-5}+3\right)^2}+\sqrt{\left(\sqrt{2x-5}-1\right)^2}=4\)
<=>\(\left|\sqrt{2x-5}+3\right|+\left|\sqrt{2x-5}-1\right|=4\)
đến đây bạn tự giải nốt nhé
minh viet thieu nha :trên là VP ,VT=\(2\sqrt{2}\)