\(\sqrt{x^2+2x}+\sqrt{2x-1}=\sqrt{3x^2+4x+1}\)

Tìm x

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 11 2017

ĐK: \(\hept{\begin{cases}x^2+2x\ge0\\2x-1\ge0\\3x^2+4x+1\ge0\end{cases}}\Leftrightarrow x\ge\frac{1}{2}\)

Đặt \(\sqrt{x^2+2x}=a;\sqrt{2x-1}=b\left(a,b\ge0\right)\)

Khi đó phương trình trở thành

 \(a+b=\sqrt{3a^2-b^2}\Leftrightarrow a^2+2ab+b^2=3a^2-b^2\)

\(-2a^2+2ab+2b^2=0\Leftrightarrow-a^2+ab+b^2=0\)

\(\Leftrightarrow\orbr{\begin{cases}a=\frac{1+\sqrt{5}}{2}b\\a=\frac{1-\sqrt{5}}{2}b\end{cases}}\)

TH phía dưới loại vì a, b cùng dấu.

Ta xét \(a=\frac{1+\sqrt{5}}{2}b\Leftrightarrow\sqrt{x^2+2x}=\frac{1+\sqrt{5}}{2}.\sqrt{2x-1}\)

\(\Leftrightarrow x^2+2x=\frac{3+\sqrt{5}}{2}\left(2x-1\right)\)

\(\Leftrightarrow x^2+2x-\left(3+\sqrt{5}\right)x+\frac{3+\sqrt{5}}{2}=0\)

\(\Leftrightarrow x^2-\left(1+\sqrt{5}\right)x+\frac{3+\sqrt{5}}{2}=0\)

\(\Leftrightarrow x=\frac{1+\sqrt{5}}{2}\left(tmđk\right)\)

1 tháng 7 2019

2,\(pt\Leftrightarrow12\left(\sqrt{x+1}-2\right)+x^2+x-12=0\)

\(\Leftrightarrow12\cdot\frac{x-3}{\sqrt{x+1}+2}+\left(x-3\right)\left(x+4\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(\frac{12}{\sqrt{x+1}+2}+x+4\right)=0\)

\(\left(\frac{12}{\sqrt{x+1}+2}+x+4\right)\ge0\left(\forall x>-1\right)\)

\(\Rightarrow x=3\)

1 tháng 7 2019

c,\(pt\Leftrightarrow3\left(x-1\right)+\frac{x-1}{4x}+\left(2-\sqrt{3x+1}\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(3+\frac{1}{4x}+\frac{1}{2+\sqrt{3x+1}}\right)=0\)

\(\Rightarrow x=1\)

\(3+\frac{1}{4x}+\frac{1}{2+\sqrt{3x+1}}=0\)

bạn làm nốt pần này nhá

20 tháng 7 2018

câu a nè bạn: http://123link.pw/O59k8hdZ

20 tháng 7 2018

cho đúng nha

10 tháng 8 2019

\(E=\sqrt{4x^2-4x+1}+\sqrt{4x^2-12x+9}\)

    \(=\sqrt{\left(2x-1\right)^2}+\sqrt{\left(2x-3\right)^2}\)

    \(=2x-1+2x-3\)

    \(=4x-4\)

Làm nốt