\(\sqrt{x+2}+1=\sqrt{x+4}+\sqrt{x+1}\)

 <...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 10 2017

x=1,25

19 tháng 10 2017

bình phương hai vế đi bạn

3 tháng 11 2016

Điều kiện \(0\le x\le5\)

\(PT\Leftrightarrow x+5-x+2\sqrt{5x-x^2}=9\)

\(\Leftrightarrow\sqrt{5x-x^2}=2\)

\(\Leftrightarrow x^2-5x+4=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=4\end{cases}}\)

17 tháng 12 2022

\(\text{Δ}=\left(m+3\right)^2-4m^2\)

\(=m^2+6m+9-4m^2=-3m^2+6m+9\)

\(=-3\left(m^2-2m-3\right)=-3\left(m-3\right)\left(m+1\right)\)

Để phương trình có hai nghiệm phân biệt thì (m-3)(m+1)<0

=>-1<m<3

b:\(\Leftrightarrow x1+x2+2\sqrt{x_1x_2}=5\)

\(\Leftrightarrow m+3+2\sqrt{m^2}=5\)

=>2|m|=5-m-3=2-m

TH1: m>=0

=>2m=2-m

=>3m=2

=>m=2/3(nhận)

TH2: m<0

=>-2m=2-m

=>-2m+m=2

=>m=-2(loại)

c: P(x1)=P(x2)

=>\(x_1^3+a\cdot x_1^2+b=x_2^3+a\cdot x_2^2+b\)

=>\(\left(x_1-x_2\right)\left(x_1^2+x_1x_2+x_2^2\right)+a\left(x_1-x_2\right)\left(x_1+x_2\right)=0\)

=>(x1-x2)(x1^2+x1x2+x2^2+ax1+ax2)=0

=>x=0 và a=0

=>\(\left\{{}\begin{matrix}a=0\\b\in R\end{matrix}\right.\)

16 tháng 6 2015

\(A=x_1.x_2=\sqrt{\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)}=\sqrt{3^2-\sqrt{5^2}}=\sqrt{9-5}=\sqrt{4}=2\)

\(B=x^2_1+x^2_2=\sqrt{\left(3+\sqrt{5}\right)^2}+\sqrt{\left(3-\sqrt{5}\right)^2}=3+\sqrt{5}+3-\sqrt{5}=6\)

28 tháng 8 2016

Ta có S m-n = (√2 + 1)/(√2 + 1)+ (√2 - 1)m /(√2 - 1)n = (√2 + 1)m (√2 - 1)n + (√2 - 1)m (√2 + 1)n

Từ đó 

S m+n + S m-n = (√2 + 1)m+n + (√2 - 1)m+n +(√2 + 1)m (√2 - 1)n + (√2 - 1)m (√2 + 1)

= (√2 + 1)m [(√2 + 1)+ (√2 -1)n] + (√2 - 1)m [(√2 - 1)n + (√2 + 1)n]

= [(√2 + 1)n + (√2 - 1)n] [(√2 + 1)m + (√2 - 1)m]

= S​ .S n

28 tháng 8 2016

sorry mk ko bít!!! ^^

6476575756876982525435465658768768676968256346564576576576

20 tháng 6 2019

\(B1,1,S_{3n}+3S_n=\left(2-\sqrt{3}\right)^{3n}+\left(2+\sqrt{3}\right)^{3n}+3\left[\left(2-\sqrt{3}\right)^n+\left(2+\sqrt{3}\right)^n\right]\)

         \(=\left[\left(2-\sqrt{3}\right)^n\right]^3+\left[\left(2+\sqrt{3}\right)^n\right]^3\)

                         \(+3\left[\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)\right]^n\left[\left(2-\sqrt{3}\right)^n+\left(2+\sqrt{3}\right)^n\right]\)

Ta có hằng đẳng thức \(a^3+b^3+3ab\left(a+b\right)=\left(a+b\right)^3\)

Ở đây với \(a=\left(2-\sqrt{3}\right)^n\)và \(b=\left(2+\sqrt{3}\right)^n\)

Nên \(S_{3n}+3S_n=\left[\left(2-\sqrt{3}\right)^n+\left(2+\sqrt{3}\right)^n\right]^3=S_n^3\)

\(2,S_3=\left(2-\sqrt{3}\right)^3+\left(2+\sqrt{3}\right)^3\)

         \(=\left(2-\sqrt{3}+2+\sqrt{3}\right)\left(2-\sqrt{3}-\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)+2+\sqrt{3}\right)\)

        \(=4\left[4-\left(4-3\right)\right]\)

         \(=12\)

Ta có \(S_4=\left(2-\sqrt{3}\right)^4+\left(2+\sqrt{3}\right)^4\)

              \(=\left[\left(2-\sqrt{3}\right)^2\right]^2+\left[\left(2+\sqrt{3}\right)^2\right]^2\)

              \(=\left(7-4\sqrt{3}\right)^2+\left(7+4\sqrt{3}\right)^2\)

              \(=97-56\sqrt{3}+97+56\sqrt{3}\)

              \(=194\)

20 tháng 6 2019

\(B2,F=x^4+6x^3+13x^2+12x+12\)(Bài này cẩn thận dấu "=")

            \(=\left(x^4+6x^3+9x^2\right)+4x^2+12x+12\)

            \(=\left(x^2+3x\right)^2+4\left(x^2+3x\right)+4+8\)

             \(=\left(x^2+3x+2\right)^2+8\ge8\)

Dấu "=" tại \(x^2+3x+2=0\Leftrightarrow\orbr{\begin{cases}x=-1\\x=-2\end{cases}}\)

12 tháng 6 2019

hỏi khó vậy bn