Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Điều kiện \(0\le x\le5\)
\(PT\Leftrightarrow x+5-x+2\sqrt{5x-x^2}=9\)
\(\Leftrightarrow\sqrt{5x-x^2}=2\)
\(\Leftrightarrow x^2-5x+4=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=4\end{cases}}\)
\(\text{Δ}=\left(m+3\right)^2-4m^2\)
\(=m^2+6m+9-4m^2=-3m^2+6m+9\)
\(=-3\left(m^2-2m-3\right)=-3\left(m-3\right)\left(m+1\right)\)
Để phương trình có hai nghiệm phân biệt thì (m-3)(m+1)<0
=>-1<m<3
b:\(\Leftrightarrow x1+x2+2\sqrt{x_1x_2}=5\)
\(\Leftrightarrow m+3+2\sqrt{m^2}=5\)
=>2|m|=5-m-3=2-m
TH1: m>=0
=>2m=2-m
=>3m=2
=>m=2/3(nhận)
TH2: m<0
=>-2m=2-m
=>-2m+m=2
=>m=-2(loại)
c: P(x1)=P(x2)
=>\(x_1^3+a\cdot x_1^2+b=x_2^3+a\cdot x_2^2+b\)
=>\(\left(x_1-x_2\right)\left(x_1^2+x_1x_2+x_2^2\right)+a\left(x_1-x_2\right)\left(x_1+x_2\right)=0\)
=>(x1-x2)(x1^2+x1x2+x2^2+ax1+ax2)=0
=>x=0 và a=0
=>\(\left\{{}\begin{matrix}a=0\\b\in R\end{matrix}\right.\)
\(A=x_1.x_2=\sqrt{\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)}=\sqrt{3^2-\sqrt{5^2}}=\sqrt{9-5}=\sqrt{4}=2\)
\(B=x^2_1+x^2_2=\sqrt{\left(3+\sqrt{5}\right)^2}+\sqrt{\left(3-\sqrt{5}\right)^2}=3+\sqrt{5}+3-\sqrt{5}=6\)
Ta có S m-n = (√2 + 1)m /(√2 + 1)n + (√2 - 1)m /(√2 - 1)n = (√2 + 1)m (√2 - 1)n + (√2 - 1)m (√2 + 1)n
Từ đó
S m+n + S m-n = (√2 + 1)m+n + (√2 - 1)m+n +(√2 + 1)m (√2 - 1)n + (√2 - 1)m (√2 + 1)n
= (√2 + 1)m [(√2 + 1)n + (√2 -1)n] + (√2 - 1)m [(√2 - 1)n + (√2 + 1)n]
= [(√2 + 1)n + (√2 - 1)n] [(√2 + 1)m + (√2 - 1)m]
= S m .S n
sorry mk ko bít!!! ^^
6476575756876982525435465658768768676968256346564576576576
\(B1,1,S_{3n}+3S_n=\left(2-\sqrt{3}\right)^{3n}+\left(2+\sqrt{3}\right)^{3n}+3\left[\left(2-\sqrt{3}\right)^n+\left(2+\sqrt{3}\right)^n\right]\)
\(=\left[\left(2-\sqrt{3}\right)^n\right]^3+\left[\left(2+\sqrt{3}\right)^n\right]^3\)
\(+3\left[\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)\right]^n\left[\left(2-\sqrt{3}\right)^n+\left(2+\sqrt{3}\right)^n\right]\)
Ta có hằng đẳng thức \(a^3+b^3+3ab\left(a+b\right)=\left(a+b\right)^3\)
Ở đây với \(a=\left(2-\sqrt{3}\right)^n\)và \(b=\left(2+\sqrt{3}\right)^n\)
Nên \(S_{3n}+3S_n=\left[\left(2-\sqrt{3}\right)^n+\left(2+\sqrt{3}\right)^n\right]^3=S_n^3\)
\(2,S_3=\left(2-\sqrt{3}\right)^3+\left(2+\sqrt{3}\right)^3\)
\(=\left(2-\sqrt{3}+2+\sqrt{3}\right)\left(2-\sqrt{3}-\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)+2+\sqrt{3}\right)\)
\(=4\left[4-\left(4-3\right)\right]\)
\(=12\)
Ta có \(S_4=\left(2-\sqrt{3}\right)^4+\left(2+\sqrt{3}\right)^4\)
\(=\left[\left(2-\sqrt{3}\right)^2\right]^2+\left[\left(2+\sqrt{3}\right)^2\right]^2\)
\(=\left(7-4\sqrt{3}\right)^2+\left(7+4\sqrt{3}\right)^2\)
\(=97-56\sqrt{3}+97+56\sqrt{3}\)
\(=194\)
\(B2,F=x^4+6x^3+13x^2+12x+12\)(Bài này cẩn thận dấu "=")
\(=\left(x^4+6x^3+9x^2\right)+4x^2+12x+12\)
\(=\left(x^2+3x\right)^2+4\left(x^2+3x\right)+4+8\)
\(=\left(x^2+3x+2\right)^2+8\ge8\)
Dấu "=" tại \(x^2+3x+2=0\Leftrightarrow\orbr{\begin{cases}x=-1\\x=-2\end{cases}}\)