Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(1-16x^2\ge0\Rightarrow x^2\le16\Rightarrow-\frac{1}{4}\le x\le\frac{1}{4}\)
b/ \(\left\{{}\begin{matrix}x^2-3\ge0\\x^2-3\ne1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x\ge\sqrt{3}\\x\le-\sqrt{3}\end{matrix}\right.\\x\ne\pm2\end{matrix}\right.\)
c/ \(8x-x^2-15\ge0\Rightarrow3\le x\le5\)
d/ Hàm số xác định với mọi x
e/ \(\left\{{}\begin{matrix}x\ge\frac{1}{2}\\x\ne1\end{matrix}\right.\)
f/ \(\left\{{}\begin{matrix}-4\le x\le4\\x>-\frac{1}{2}\\\left[{}\begin{matrix}x\ge4+\sqrt{2}\\x\le4-\sqrt{2}\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow-\frac{1}{2}< x\le4-\sqrt{2}\)
Điều kiện xác định của biểu thức là:
\(2x+1>0\) được \(x>-\dfrac{1}{2}\)
\(x^2\le16\) được \(-4\le x\le4\)
\(x^2-8x+14\ge0\)
\(x^2-8x+14\ge0\Leftrightarrow\left(x-4\right)^2\ge2\)
\(\Leftrightarrow\left[{}\begin{matrix}x-4\le-\sqrt{2}\\x-4\ge\sqrt{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x\le4-\sqrt{2}\\x\ge4+\sqrt{2}\end{matrix}\right.\)
Vậy đkxđ của biểu thức là:
\(-\dfrac{1}{2}< x\le4-\sqrt{2}\)
a, dk \(1-16x^2\ge0\Leftrightarrow\left(1-4x\right)\left(1+4x\right)\ge0\)
\(\Leftrightarrow-\frac{1}{4}\le x\le\frac{1}{4}\)
b tuong tu
c, \(\sqrt{\left(x-3\right)\left(5-x\right)}\ge0\Leftrightarrow\left(x-3\right)\left(5-x\right)\ge0\Leftrightarrow3\le x\le5\)
d.\(\sqrt{x^2-x+1}>0\)
ma \(x^2-x+1=x^2-2.\frac{1}{2}x+\frac{1}{4}+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\)
suy ra thoa man vs moi x
\(a,\)\(\sqrt{\frac{1}{\left(x-3\right)^2}}\)
\(đk:\)\(\frac{1}{\left(x-3\right)^3}\ne0\)\(\Rightarrow\left(x-3\right)^3\ne0\)\(\Leftrightarrow x\ne3\)
Và \(\frac{1}{\left(x-3\right)}>0\Rightarrow x-3>0\)\(\Rightarrow x>3\)
Vậy để căn thức xác định thì x > 3
\(\sqrt{8x-x^2-15}\)
\(=\sqrt{-\left(x^2-8x+15\right)}\)
\(=\sqrt{-\left(x^2-8x+16-1\right)}\)
\(=\sqrt{-\left[\left(x^2-8x+16\right)-1\right]}\)
\(=\sqrt{-\left(x-4\right)^2+1}\)
\(đk:\)\(-\left(x-4\right)^2+1\ge0\)
\(\Rightarrow\left(x-4\right)^2\le1\)
\(\Rightarrow\orbr{\begin{cases}\left(x-4\right)^2=1\\\left(x-4\right)^2=0\end{cases}}\)
\(\left(x-4\right)^2=1\Rightarrow\orbr{\begin{cases}x=5\\x=3\end{cases}}\)
\(\left(x-4\right)^2=0\Rightarrow x=4\)
Vậy căn thức xác định \(\Leftrightarrow x=\left\{3;4;5\right\}\)
a) \(2-6x\ge0\Rightarrow x\le\frac{1}{3}\)
b) \(3x-12\ge0\Rightarrow x\ge4\)
c) \(\hept{\begin{cases}x+3\ge0\\2x+1\ge0\end{cases}}\Rightarrow\hept{\begin{cases}x\ge-3\\x\ge-\frac{1}{2}\end{cases}}\Rightarrow x\ge-\frac{1}{2}\)
d) \(\hept{\begin{cases}x^2-25\ne0\\x-4\ge0\end{cases}}\Rightarrow\hept{\begin{cases}x\ne5\\x\ge4\end{cases}}\)
e) \(x^2-8x+7\ge0\)
<=> \(\left(x-1\right)\left(x-7\right)\ge0\)
<=> \(\hept{\begin{cases}x\ge1\\x\ge7\end{cases}}\Rightarrow x\ge7\) or \(\hept{\begin{cases}x\le1\\x\le7\end{cases}}\Rightarrow x\le1\)
mình giúp bài 3 cho
\(\sqrt{25x-125}-3\sqrt{\frac{x-5}{9}}-\frac{1}{3}\sqrt{9x-45}=6\left(ĐKXĐ:x\ge5\right)\)
\(< =>\sqrt{25\left(x-5\right)}-3\sqrt{\frac{x-5}{9}}-\frac{1}{3}\sqrt{9\left(x-5\right)}=6\)
\(< =>\sqrt{25}.\sqrt{x-5}-3\frac{\sqrt{x-5}}{\sqrt{9}}-\frac{1}{3}\sqrt{9}.\sqrt{x-5}=6\)
\(< =>5.\sqrt{x-5}-3.\frac{\sqrt{x-5}}{3}-\frac{1}{3}.3.\sqrt{x-5}=6\)
\(< =>5.\sqrt{x-5}-\sqrt{x-5}-\sqrt{x-5}=6\)
\(< =>3\sqrt{x-5}=6< =>\sqrt{x-5}=2\)
\(< =>x-5=4< =>x=4+5=9\left(tmđk\right)\)
\(\sqrt{x^2-8x+16}=\sqrt{x^2-2.4x+4^2}=\sqrt{\left(x-4\right)^2}=\left|x-4\right|\)
Vậy đkxđ là x ∈ R
Ta có \(\sqrt{x^2-8x+16}=\sqrt{x^2-2.x.4+4^2}=\sqrt{\left(x-4\right)^2}\)
Vì (x-4)2\(\ge0\) nên biểu thức \(\sqrt{x^2-8x+16}\) luôn xác định với mọi x\(\in R\)