\(\sqrt{x^110+x^211+x^312+x^413+x^514+x^615}=\dfrac{x^7}{\sqrt[7]{x+x+x^3}}tìmx\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 8 2018

a)\(\sqrt{x}=4\Leftrightarrow x=4^2\Leftrightarrow x=16\)

b)\(\sqrt{x-2}=3\Leftrightarrow x-2=3^2\Leftrightarrow x=9-2=7\)

c)\(\sqrt{\dfrac{x}{3}-\dfrac{7}{6}}=\dfrac{1}{6}\Leftrightarrow\dfrac{x}{3}-\dfrac{7}{6}=\dfrac{1}{36}\Leftrightarrow\dfrac{x}{3}=-\dfrac{41}{36}\Leftrightarrow x=-\dfrac{41}{12}\)

d)\(x^2=7vớix< 0\)

\(\Leftrightarrow\left(-x\right)^2=7\Leftrightarrow-x=\sqrt{7}\Leftrightarrow x=-\sqrt{7}\)

e)\(x^2-4=0với>0\)

\(\Leftrightarrow x^2=4\Leftrightarrow x=\sqrt{4}=2\)

f)\(\left(2x+7\sqrt{7}\right)^2=7\)

\(\Leftrightarrow4x^2+\sqrt{5488}+343=7\)

\(\Leftrightarrow4x^2+\sqrt{5488}=-336\)

\(\Leftrightarrow4x^2=28\left(12-\sqrt{7}\right)\Leftrightarrow x^2=\dfrac{28\left(12-\sqrt{7}\right)}{4}=7\left(12-\sqrt{7}\right)\)

\(\Leftrightarrow x=\sqrt{7\left(12-\sqrt{7}\right)}=\sqrt{84-7\sqrt{7}}\)

13 tháng 8 2018

a) \(\sqrt{x}=4\Rightarrow x=16\)

b) \(\sqrt{x-2}-3\\ \Rightarrow x-2=9\\ \Rightarrow x=11\)

c) \(x^2=7\\ \Rightarrow x=\pm\sqrt{7}\\ Vớix< 0\Rightarrow x=-\sqrt{7}\)

d) \(x^2-4=0\\\Rightarrow x=\pm2\\ Vớix>0\Rightarrow x=2 \)

a: Đặt \(\sqrt{x^2+x+3}=a\)

Ta sẽ có \(\dfrac{a^2}{a}+\dfrac{1}{a}=a+\dfrac{1}{a}\ge2\cdot\sqrt{a\cdot\dfrac{1}{a}}=2\left(đpcm\right)\)

b: Đặt \(\sqrt{x^2+x+3}=b\)

Ta sẽ có \(\dfrac{b^2+4}{b}=b+\dfrac{4}{b}\ge2\cdot\sqrt{b\cdot\dfrac{4}{b}}=4\)

14 tháng 4 2018

19) \(\sqrt{19-x}=19\)

\(\Rightarrow\sqrt{19-x}=\sqrt{19^2}\)

\(\Rightarrow19-x=19^2\)

\(\Rightarrow19-19^2=x\)

\(\Rightarrow x=19\left(1-19\right)=-19.18=-342\)

21) \(\sqrt{x-1}=\dfrac{1}{3}\)

\(\Rightarrow\sqrt{x-1}=\sqrt{\left(\dfrac{1}{3}\right)^2}\)

\(\Rightarrow x-1=\dfrac{1}{3^2}\)

\(x=\dfrac{1+9}{9}=\dfrac{10}{9}\)

24)\(\sqrt{2x+\dfrac{5}{4}}=\dfrac{3}{2}\)

\(\Rightarrow\sqrt{2x+\dfrac{5}{4}}=\sqrt{\left(\dfrac{3}{2}\right)^2}\)

\(\Rightarrow2x+\dfrac{5}{4}=\left(\dfrac{3}{2}\right)^2=\dfrac{9}{4}\)

\(\Rightarrow2x=\dfrac{9-5}{4}=1\)

\(\Rightarrow x=0,5\)

25) \(\sqrt{\dfrac{x}{3}-\dfrac{7}{6}}=\dfrac{1}{6}\)

\(\Rightarrow\sqrt{\dfrac{2x-7}{6}}=\sqrt{\left(\dfrac{1}{6}\right)^2}\)

\(\Rightarrow\dfrac{2x-7}{6}=\left(\dfrac{1}{6}\right)^2=\dfrac{1}{36}\)

\(\Rightarrow\dfrac{12x-42}{36}=\dfrac{1}{36}\)

\(\Rightarrow12x-42=1\)

\(\Rightarrow12x=43\)

\(\Rightarrow x=\dfrac{43}{12}\)

19 tháng 3 2017

\(a^2+2ab+b^2=\left(a+b\right)^2\ge0\forall a,b\)

\(a^2-2ab+b^2=\left(a-b\right)^2\ge0\forall a,b\)

\(A^{2n}\ge0\forall A\)

\(-A^{2n}\le0\forall A\)

19 tháng 3 2017

\(\left|A\right|\ge0\forall A\)

\(-\left|A\right|\le0\forall A\)

\(\left|A\right|+\left|B\right|\ge\left|A+B\right|\)

\(\left|A\right|-\left|B\right|\le\left|A-B\right|\)

a) \(7-\sqrt{x}=0\)

\(\Rightarrow\sqrt{x}=7\)

\(\Rightarrow x=\left(\sqrt{7}\right)^2\)

b) \(5\sqrt{x}+1=40\)

\(\Rightarrow5\sqrt{x}=39\)

\(\Rightarrow\sqrt{x}=7,8\)

\(\Rightarrow x=\left(\sqrt{7,8}\right)^2\)

c) \(\dfrac{5}{12}\sqrt{x}-\dfrac{1}{6}=\dfrac{1}{3}\)

\(\Rightarrow\dfrac{5}{12}\sqrt{x}=\dfrac{1}{2}\)

\(\Rightarrow\sqrt{x}=1,2\)

\(\Rightarrow x=\left(\sqrt{1,2}\right)^2\)

d) \(4x^2-1=0\)

\(\Rightarrow\left(2x-1\right)\left(2x+1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}2x-1=0\Rightarrow x=0,5\\2x+1=0\Rightarrow x=-0,5\end{matrix}\right.\)

e) \(\sqrt{x+1}-2=0\)

\(\Rightarrow\sqrt{x+1}=2\)

\(\Rightarrow x+1=1,414\)

\(\Rightarrow x=0,414\)

f) \(2x^2+0,82=1\)

\(\Rightarrow2x^2=0,18\)

\(\Rightarrow x^2=0,09\)

\(\Rightarrow x=\pm0,3\)

g) Không có kết quả

24 tháng 6 2017

Câu 2:

a) \(\sqrt{x}=5\)

\(\Leftrightarrow x=25\)

b) \(2\sqrt{x}=\sqrt{12}\)

\(\Leftrightarrow2\sqrt{x}=2\sqrt{3}\)

\(\Leftrightarrow\sqrt{x}=\sqrt{3}\)

\(\Leftrightarrow x=3\)

c) \(x^2=6\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{6}\\x=-\sqrt{6}\end{matrix}\right.\)

d) \(-3\sqrt{x}=-\sqrt{18}\)

\(\Leftrightarrow-3\sqrt{x}=3\sqrt{2}\)

\(\Leftrightarrow\sqrt{x}=\sqrt{2}\)

\(\Leftrightarrow x=2\)

e) \(x^2-1=7\)

\(\Leftrightarrow x^2=8\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\sqrt{2}\\x=-2\sqrt{2}\end{matrix}\right.\)

f) \(3\sqrt{x^2}=\sqrt{9}\)

\(\Leftrightarrow3\cdot\left|x\right|=3\)

\(\Leftrightarrow\left|x\right|=1\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)

24 tháng 6 2017

a, Ta có: \(\left(xyz\right)^2=\dfrac{2}{7}.\dfrac{3}{2}.\dfrac{3}{7}\)\(=\dfrac{9}{49}\)

\(\Rightarrow xyz=\sqrt{\dfrac{9}{49}}=\dfrac{3}{7}.\)

\(\Rightarrow z=\dfrac{xyz}{xy}=\dfrac{3}{7}:\dfrac{2}{7}=1,5.\)

\(\Rightarrow y=1;x=\dfrac{2}{7}\).

b, Tương tự.

19 tháng 11 2022

a: =>1/6x=-49/60

=>x=-49/60:1/6=-49/60*6=-49/10

b: =>3/2x-1/5=3/2 hoặc 3/2x-1/5=-3/2

=>x=17/15 hoặc x=-13/15

c: =>1,25-4/5x=-5

=>4/5x=1,25+5=6,25

=>x=125/16

d: =>2^x*17=544

=>2^x=32

=>x=5

i: =>1/3x-4=4/5 hoặc 1/3x-4=-4/5

=>1/3x=4,8 hoặc 1/3x=-0,8+4=3,2

=>x=14,4 hoặc x=9,6

j: =>(2x-1)(2x+1)=0

=>x=1/2 hoặc x=-1/2

1/Trong các số:\(\sqrt{\left(-5\right)^2}\);\(\sqrt{5^2}\);\(-\sqrt{\left(-5\right)^2}\);\(-\sqrt{5^2}\)căn bậc hai số học của 25 là............... 2/Kết quả nào đúng:A/0,15∈I , B/\(\sqrt{2}\in Q\) , C/\(\dfrac{3}{5}\in R\) , D/Ba kết quả trên đều sai 3/Tìm x,biết:a/\(-\sqrt{x}=\left(-7\right)^2\) b/\(\sqrt{x+1}+2=0\) c/\(5\sqrt{x+1}+2=0\) d/\(\sqrt{2x-1}=29\) e/\(x^2=0,81\) ...
Đọc tiếp

1/Trong các số:\(\sqrt{\left(-5\right)^2}\);\(\sqrt{5^2}\);\(-\sqrt{\left(-5\right)^2}\);\(-\sqrt{5^2}\)căn bậc hai số học của 25 là...............

2/Kết quả nào đúng:A/0,15∈I , B/\(\sqrt{2}\in Q\) , C/\(\dfrac{3}{5}\in R\) , D/Ba kết quả trên đều sai

3/Tìm x,biết:a/\(-\sqrt{x}=\left(-7\right)^2\) b/\(\sqrt{x+1}+2=0\) c/\(5\sqrt{x+1}+2=0\) d/\(\sqrt{2x-1}=29\)

e/\(x^2=0,81\) g/\(\left(x-1\right)^2=1\dfrac{9}{16}\) h/\(\sqrt{3-2x}=1\) f/\(\sqrt{x}-x=0\)

4/Cho A=\(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\).CMR với x=\(\dfrac{16}{9}\) và x=\(\dfrac{25}{9}\) thì A có giá trị là số nguyên.

5/Tính:a/\(\sqrt{m^2}\) với \(m\ge0?\) b/\(\sqrt{m^2}\) với \(m< 0\)

6/Tính \(x^2\),biết rằng:\(\sqrt{3x}=9\)?

7/Tính:\(\left(x-3\right)^2\) biết rằng:\(\sqrt{x-3}=2\)?

8/Tính:a/\(2\sqrt{a^2}\) với \(a\ge0\) b/\(\sqrt{3a^2}\) với a<0 c/\(5\sqrt{a^4}\) với a<0 d/\(\dfrac{1}{3}\sqrt{c^6}\)với c<0

9/So sánh:A=\(\dfrac{25}{49}\) ; B=\(\dfrac{\sqrt{5^2}+\sqrt{25^2}}{\sqrt{7^2}+\sqrt{49^2}}\) ; C=\(\sqrt{\dfrac{5^2}{7^2}}\) ; D=\(\dfrac{\sqrt{5^2}-\sqrt{25^2}}{\sqrt{7^2}-\sqrt{49^2}}\)

10/Cho P=\(-2019+2\sqrt{x}\) và Q=\(0,6-2\sqrt{x+3}\) a/Tìm GTNN của P? b/Tìm GTLN của Q?

11/Cho B=\(\dfrac{\sqrt{x+1}}{\sqrt{x-3}}\).Tìm số nguyên x để B có giá trị là một số nguyên?

12/a/Trong các giá trị của a là \(3,-4,0,10,-5\) giá trị thỏa mãn đẳng thức\(\sqrt{a^2}=a\)

b/Trong các giá trị của a là \(2,-6,0,1,-5\) giá trị thỏa mãn đẳng thức \(\sqrt{a^2}=|x|\)

6
AH
Akai Haruma
Giáo viên
31 tháng 7 2018

1) Theo định nghĩa về căn bậc 2 số học thì đáp án là \(\sqrt{5^2}; \sqrt{(-5)^2}\)

2) Tập $Q$ là tập những số thực biểu diễn được dưới dạng \(\frac{a}{b}\) (a,b tự nhiên, $b$ khác $0$), tập $I$ là tập những số thực không biểu diễn được dạng như trên.

\(0,15=\frac{3}{20}\in\mathbb{Q}\) , A sai.

$\sqrt{2}$ là một số vô tỉ (tính chất quen thuộc), B sai.

$C$ hiển nhiên đúng, theo định nghĩa.

Do đó áp án đúng là C.

AH
Akai Haruma
Giáo viên
31 tháng 7 2018

3)

a) \(-\sqrt{x}=(-7)^2=49\)

\(\Rightarrow \sqrt{x}=-49\) (vô lý, vì căn bậc 2 số học của một số là một số không âm , trong khi đó $-49$ âm)

Do đó pt vô nghiệm.

b) \(\sqrt{x+1}+2=0\Rightarrow \sqrt{x+1}=-2<0\)

Điều trên hoàn toàn vô lý do căn bậc 2 số học là một số không âm

Vậy pt vô nghiệm.

c) \(5\sqrt{x+1}+2=0\Rightarrow \sqrt{x+1}=\frac{-2}{5}<0\)

Điều trên hoàn toàn vô lý do căn bậc 2 số học là một số không âm

Vậy pt vô nghiệm.

d) \(\sqrt{2x-1}=29\Rightarrow 2x-1=29^2=841\Rightarrow x=\frac{841+1}{2}=421\)

e)\(x^2=0\Rightarrow x=\pm \sqrt{0}=0\)

g) \((x-1)^2=1\frac{9}{16}=\frac{25}{16}\)

\(\Rightarrow x-1=\pm \sqrt{\frac{25}{16}}=\pm \frac{5}{4}\)

\(\Rightarrow \left[\begin{matrix} x=\frac{9}{4}\\ x=\frac{-1}{4}\end{matrix}\right.\)

h) \(\sqrt{3-2x}=1\Rightarrow 3-2x=1^2=1\Rightarrow x=\frac{3-1}{2}=1\)

f) \(\sqrt{x}-x=0\Rightarrow \sqrt{x}=x\Rightarrow x=x^2\)

\(\Rightarrow x(1-x)=0\Rightarrow \left[\begin{matrix} x=0\\ x=1\end{matrix}\right.\)