\(\sqrt{x-x^2+6}+\frac{4}{x-1}=x^2+x\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 1 2017

Mình giải trước mấy câu dễ dễ ha.

(Tự add điều kiện vào)

Câu 1: \(2\left(2x+1\right)=\sqrt{x+2}-\sqrt{1-x}\)\(\Leftrightarrow2\left(2x+1\right)=\frac{x+2-\left(1-x\right)}{\sqrt{x+2}+\sqrt{1-x}}\)

Thấy \(x=-\frac{1}{2}\) (thoả ĐKXĐ) là nghiệm pt.

Xét \(x\ne-\frac{1}{2}\) thì pt tương đương \(2=\frac{1}{\sqrt{x+2}+\sqrt{1-x}}\Leftrightarrow\sqrt{x+2}+\sqrt{1-x}=2\) (1)

Bình phương lên: \(x+2+1-x+2\sqrt{\left(x+2\right)\left(1-x\right)}=4\Leftrightarrow\sqrt{\left(x+2\right)\left(1-x\right)}=\frac{1}{2}\) (2)

Đến đây từ (1) và (2) dùng định lí Viete đảo thấy pt vô nghiệm.

-----

Câu 2: (Tư tưởng đổi biến quá rõ ràng)

Đặt \(a=\sqrt{x+3},b=\sqrt{6-x}\). Có hệ: \(\hept{\begin{cases}a+b-ab=\frac{6\sqrt{2}-9}{2}\\a^2+b^2=9\end{cases}}\)

(Tự giải tiếp nha bạn. Tới đây đặt \(S=a+b,P=ab\) là ra thôi)

-----

Câu 4: Đặt \(y=x^2\) thì pt trở thành \(y^2+\sqrt{y+2016}=2016\) (\(y\) không âm)

(Bạn tự CM \(y=k=\frac{\sqrt{8061}-1}{2}\) là nghiệm)

Xét \(0\le y< k\) thì vế trái \(< 2016\), xét \(y>k\) thì vế phải \(>2016\).

Vậy pt có nghiệm duy nhất \(y=k\) như trên. Hay pt đầu có 2 nghiệm (cộng trừ)\(\sqrt{\frac{\sqrt{8061}-1}{2}}\)

8 tháng 1 2017

thank bạn Trần Quốc Đạt

29 tháng 10 2020

Trả lời nhanh giúp mình với mình cần gấp lắm

16 tháng 8 2017

mọi người jup mình giải đi khó wá

1 bài thui cx đc

13 tháng 11 2016

6/ Đặt \(\hept{\begin{cases}\sqrt[4]{x}=a\\\sqrt[4]{2-x}=b\end{cases}}\)

\(\Rightarrow b^4+a^4=2\)

Từ đó ta có: a + b = 2

Ta có: \(a^4+b^2\ge\frac{\left(a^2+b^2\right)^2}{2}\ge\frac{\left(a+b\right)^4}{8}=\frac{16}{8}=2\)

Dấu = xảy ra khi a = b = 1

=> x = 1

8 tháng 10 2017

\(=\left(\frac{x-2\sqrt{x}-1}{x-4}-\frac{x-4}{x-4}\right):\left[\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}+\frac{\sqrt{x}-2}{\sqrt{x}-3}-\frac{\sqrt{x}-3}{\sqrt{x}+2}\right]\)

\(=\frac{x-2\sqrt{x}-1-x+4}{x-4}:\left[\frac{\sqrt{x}-2}{\sqrt{x}+3}+\frac{\sqrt{x}-2}{\sqrt{x}-3}-\frac{\sqrt{x}-3}{\sqrt{x}+2}\right]\)

\(=\frac{3-2\sqrt{x}}{x-4}:\frac{\left(x-4\right)\left(\sqrt{x}-3\right)+\left(x-4\right)\left(\sqrt{x}+3\right)-\left(x-9\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x-3}\right)\left(\sqrt{x}+2\right)}\)

bạn làm tiếp nha! làm bằng máy tính phức tạp lắm