\(\sqrt{x}\) nhân x là bằng gì vậy mọi người ?

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 12 2016

 1. hiểu rồi k ngày đăng cầu mới--->trả lời  ngay

2. chưa hiểu hỏi bải ngày--> nhận lời giải thích luôn

3.chưa k quay về câu 1

9 tháng 12 2016

là sao vậy?

10 tháng 12 2016

\(\sqrt{x-1}+x^2-1=0\)DK: \(x\ge1\)\(\Leftrightarrow\sqrt{x-1}\left[1+\left(x+1\right)\sqrt{x-1}\right]=0\Leftrightarrow\)

*\(\sqrt{x-1}=0=>x=1\)

*\(1+\left(x+1\right)\sqrt{x-1}=0\Leftrightarrow vonghiem\)

KL: x=1

b)

\(\sqrt{x^2+3}=!x^2+1!\)  đặt x^2+1=t=> t>=1

\(\sqrt{t+2}=t\Leftrightarrow t^2-t-2=0=>t=-1\left(hoacloai\right)\&t=2\)

=>\(x=+-1\)

c)

\(x^3+4=4x\sqrt{x}\)  dk x>=0 

\(x^3+4=4\sqrt{x^3}\) \(Dat..\sqrt{x^3}=t=>t\ge0\)

t^2+4=4t<=>t^2-4t+4=0=> t=2=> x=\(\sqrt[3]{4}\)

 nếu bạn  muốn minh trả lời tiếp hay gui link truc tiep den minh.

xem bài và kiểm tra lại số liệu rất có thể sai lỗi số học.

10 tháng 12 2016

 sao không thấy ai giải/

thấy có loi roi vào copy pass linh tinh

29 tháng 10 2020

\(x=3+2\sqrt{2}\)    

\(x-3-2\sqrt{2}=0\)    

\(x-\left(3+2\sqrt{2}\right)=0\)   Vậy nhân tử của \(x=3+2\sqrt{2}\)   là \(x-\left(3+2\sqrt{2}\right)\)

AH
Akai Haruma
Giáo viên
12 tháng 10 2024

Lời giải:

Cho $x=3$ thì:

$P(2)+2P(2)=2^2\Rightarrow 3P(2)=4\Rightarrow P(2)=\frac{4}{3}$

$\Rightarrow P(x-1)=x^2-2P(2)=x^2-2.\frac{4}{3}=x^2-\frac{8}{3}$

$\Rightarrow P(x)=(x+1)^2-\frac{8}{3}$

Thay $x=\sqrt{2013}-1$ ta có:

$P(\sqrt{2013}-1)=(\sqrt{2013}-1+1)^2-\frac{8}{3}=2013-\frac{8}{3}=\frac{6031}{3}$

4 tháng 8 2017

Vế trái: \(\frac{2\sqrt{3}}{2\sqrt{3}.\sqrt{3}}+\frac{\sqrt{2}}{3\sqrt{2}.\sqrt{2}}+\frac{\sqrt{3-2\sqrt{6}+2}}{6}\)

\(=\frac{2\sqrt{3}+\sqrt{2}+\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}}{6}\)

Phá căn thức ra, xét trị tuyệt đối, đc đpcm

12 tháng 7 2019

Em thử nha,sai thì thôi ạ.

2/ ĐK: \(-2\le x\le2\)

PT \(\Leftrightarrow\sqrt{2x+4}-\sqrt{8-4x}=\frac{6x-4}{\sqrt{x^2+4}}\)

Nhân liên hợp zô: với chú ý rằng \(\sqrt{2x+4}+\sqrt{8-4x}>0\) với mọi x thỏa mãn đk

PT \(\Leftrightarrow\frac{6x-4}{\sqrt{2x+4}+\sqrt{8-4x}}-\frac{6x-4}{\sqrt{x^2+4}}=0\)

\(\Leftrightarrow\left(6x-4\right)\left(\frac{1}{\sqrt{2x+4}+\sqrt{8-4x}}-\frac{1}{\sqrt{x^2+4}}\right)=0\)

Tới đây thì em chịu chỗ xử lí cái ngoặc to rồi..

13 tháng 7 2019

1.\(\left(\sqrt{x+3}-\sqrt{x+1}\right)\left(x^2+\sqrt{x^2+4x+3}\right)=2x\)

ĐK \(x\ge-1\)

Nhân liên hợp ta có

\(\left(x+3-x-1\right)\left(x^2+\sqrt{x^2+4x+3}\right)=2x\left(\sqrt{x+3}+\sqrt{x+1}\right)\)

<=>\(x^2+\sqrt{\left(x+1\right)\left(x+3\right)}=x\left(\sqrt{x+3}+\sqrt{x+1}\right)\)

<=> \(\left(x^2-x\sqrt{x+3}\right)+\left(\sqrt{\left(x+1\right)\left(x+3\right)}-x\sqrt{x+1}\right)=0\)

<=> \(\left(x-\sqrt{x+3}\right)\left(x-\sqrt{x+1}\right)=0\)

<=> \(\orbr{\begin{cases}x=\sqrt{x+3}\\x=\sqrt{x+1}\end{cases}}\)

=> \(x\in\left\{\frac{1+\sqrt{13}}{2};\frac{1+\sqrt{5}}{2}\right\}\)

Vậy \(x\in\left\{\frac{1+\sqrt{13}}{2};\frac{1+\sqrt{5}}{2}\right\}\)