\(\sqrt{x-7}+\sqrt{7-x}=7\) Cô ơi câu này trình bày ra sao ạ ?

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 11 2017

ĐKXĐ:  \(\sqrt{x-7}\)cần\(x\ge7\)

              \(\sqrt{7-x}\)cần\(x\le7\)

Từ đó suy ra x=7.

Thay x=7, ta có 0=7

=> x không tồn tại

8 tháng 11 2017

Bình phương 2 vế pt ta có : x-7+7-x+2\(\sqrt{\left(x-7\right).\left(7-x\right)}\) = 49

<=> 49 = 2\(\sqrt{-x^2+14x-49}\)

<=> 2401 = 4. (x^2-14x+49) = 4x^2 -56x + 196

<=> x^2 - 14x + 49 = 2401/4

<=> (x-7)^2 = 2401/4

<=> x-7 = 49/2 hoặc x-7 = -49/2

<=> x= 63/2 hoặc x= -35/2

19 tháng 9 2016

nhập PT vào máy tính, sử dụng dầu "=" ô nút CALC.

sau khi nhập xong, nhấn SHIFT,CALC, rồi nhấn dấu =

Ta được x=-1,322875656

19 tháng 9 2016

em ko biết làm

hi hi

20 tháng 9 2016

ĐKXĐ: \(\sqrt{2}\le x\le\sqrt{2}\)

Ta có : \(2x^2-x+\sqrt{2-x^2}=\frac{7}{2}+\sqrt{2-x}\)

\(\Leftrightarrow4x^2-2x+2\sqrt{2-x^2}=7+2\sqrt{2-x}\)

\(\Leftrightarrow-4\left(2-x^2\right)+2\left(2-x\right)+2\sqrt{2-x^2}-2\sqrt{2-x}-3=0\)

Đặt \(a=\sqrt{2-x^2}\) , \(b=\sqrt{2-x}\) , pt trở thành : 

\(-4a^2+2b^2+2a-2b-3=0\)

Tới đây bạn lập ĐENTA rồi tìm mối liên hệ giữa a và b, từ đó suy được pt mới ẩn x.

Vì được dùng máy tính nên bạn tự tìm nghiệm nhé :)

13 tháng 12 2016

theo mk thì chỗ bình phương 2 vế của bạn chỉ cần bằng luôn 4x+4 chứ k cần giá trị tuyệt đối, còn ở fong cuối bạn nên thêm (TMĐK) vào sau kết quả

15 tháng 12 2016

nên bỏ ý 4 vì ngay ở ĐKXĐ đã có nên có thể bỏ ý đó đi

√​(9−√​7​​​)(9+√​7​​​)​​​x

√​9​2​​−√​7​​​​2​​​​​x

√​81−√​7​​​​2​​​​​x

√​81−7​​​x

√​74​​​x

cái 72 là 7 mũ 2 nha 

6 tháng 2 2020

\(b,x+2\sqrt{7-x}=2\sqrt{x-1}+\sqrt{-x^2+8x-7}+1\)

Đặt: \(\hept{\begin{cases}\sqrt{x-1}=a\\\sqrt{7-x}=b\end{cases}}\)Ta được pt mới: \(a^2+2b=2a+ab\Leftrightarrow\left(a-2\right)\left(a-b\right)=0\)

  • Với \(a=2\Rightarrow x=5\)
  • Với \(a=b\Rightarrow x=2\)
7 tháng 2 2020

cái thứ 1 nhân liên hợp đi 

sau đó nhân chéo lên vs vế phải

rồi rút gọn

bình lên

giải pt là đc

9 tháng 9 2017

CÁi  này easy mà .-.

\(\frac{\sqrt[3]{7-x}-\sqrt[3]{x-5}}{\sqrt[3]{7-x}+\sqrt[3]{x-5}}=6-x\)

\(\Leftrightarrow\frac{\frac{\left(7-x\right)-\left(x-5\right)}{\left(\sqrt[3]{7-x}\right)^2+\left(\sqrt[3]{x-5}\right)^2+\sqrt[3]{7-x}\sqrt[3]{x-5}}}{\sqrt[3]{7-x}+\sqrt[3]{x-5}}+\left(x-6\right)=0\)

\(\Leftrightarrow\frac{\frac{-2\left(x-6\right)}{\left(\sqrt[3]{7-x}\right)^2+\left(\sqrt[3]{x-5}\right)^2+\sqrt[3]{7-x}\sqrt[3]{x-5}}}{\sqrt[3]{7-x}+\sqrt[3]{x-5}}+\left(x-6\right)=0\)

\(\Leftrightarrow\left(x-6\right)\left(\frac{\frac{-2}{\left(\sqrt[3]{7-x}\right)^2+\left(\sqrt[3]{x-5}\right)^2+\sqrt[3]{7-x}\sqrt[3]{x-5}}}{\sqrt[3]{7-x}+\sqrt[3]{x-5}}+1\right)=0\)

\(\Rightarrow x-6=0\Rightarrow x=6\)

\(ĐK:x\ge1\)

\(PT\Leftrightarrow x+3-4\sqrt{x+3}+4+\sqrt{x-1}=0\)

\(\Leftrightarrow\left(\sqrt{x+3}-2\right)^2+\sqrt{x-1}=0\)

\(\Leftrightarrow\hept{\begin{cases}\sqrt{x+3}=2\\x-1=0\end{cases}\Leftrightarrow}x=1\left(tm\right)\)

1 tháng 6 2017

Đk:\(-7\le x\le3\)

Áp dụng BĐT \(\sqrt{a}+\sqrt{b}\ge\sqrt{a+b}\) ta có:

\(VT=\sqrt{x-3}+\sqrt{7-x}\)

\(\ge\sqrt{x-3+7-x}=\sqrt{4}=2\)

Lại có: \(VP=-x^2+6x-7=-x^2+6x-9+2\)

\(=-\left(x^2-6x+9\right)+2=-\left(x-3\right)^2+2\ge2\)

\(\Rightarrow VT\ge2\ge VP\) xảy ra khi \(VT=VP=2\)

\(\Rightarrow-\left(x-3\right)^2+2=2\Rightarrow-\left(x-3\right)^2=0\Rightarrow x=3\) (thỏa)

Vậy pt có nghiệm x=3