\(\sqrt{x-6}=2\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 7 2023

\(\sqrt[]{x-6}=2\left(x\ge6\right)\)

\(\Rightarrow x-6=4\Rightarrow x=10\)

14 tháng 7 2023

\(\sqrt{x-6}\)  =2

Đk \(x\) - 6 ≥ 0 ⇒ \(x\) ≥ 6

      \(\sqrt{x-6}=2\)

       \(x-6=4\)

        \(x=4+6\)

         \(x\) = 10 

4 tháng 1 2024

1)\(x>y\)

2)\(x< y\)

3)\(x< y\)

23 tháng 8 2016

a,x>y

b,x<y

c,ko biết

4 tháng 1 2024

a) \(x>y\)

b)\(x< y\)

c)\(x< y\)

a: \(x=2\sqrt{7}=\sqrt{28}>\sqrt{27}=y\)

b: \(x=6\sqrt{2}=\sqrt{72}< \sqrt{75}=y\)

24 tháng 10 2019

1.

ĐKXĐ: \(x\ge0\) cho tất cả các câu

a) x = 6 (thỏa mãn)

b) vô nghiệm vì VT≥0 mà VP < 0

c) x = 5 (thỏa mãn)

d) \(\sqrt{x}=\left|-31\right|=31\)

x = 961(thỏa mãn)

bài 2 tương tự

24 tháng 10 2019

Bài 2:

a) \(x^2-23=0\)

\(\Rightarrow x^2=0+23\)

\(\Rightarrow x^2=23\)

\(\Rightarrow\left[{}\begin{matrix}x=\sqrt{23}\\x=-\sqrt{23}\end{matrix}\right.\)

Vậy \(x\in\left\{\sqrt{23};-\sqrt{23}\right\}.\)

b) \(7-\sqrt{x}=0\)

\(\Rightarrow\sqrt{x}=7-0\)

\(\Rightarrow\sqrt{x}=7\)

\(\Rightarrow\sqrt{x}=\left(\sqrt{7}\right)^2\)

\(\Rightarrow\sqrt{x}=\sqrt{49}\)

\(\Rightarrow x=49\)

Vậy \(x=49.\)

Chúc bạn học tốt!

13 tháng 8 2018

a)\(\sqrt{x}=4\Leftrightarrow x=4^2\Leftrightarrow x=16\)

b)\(\sqrt{x-2}=3\Leftrightarrow x-2=3^2\Leftrightarrow x=9-2=7\)

c)\(\sqrt{\dfrac{x}{3}-\dfrac{7}{6}}=\dfrac{1}{6}\Leftrightarrow\dfrac{x}{3}-\dfrac{7}{6}=\dfrac{1}{36}\Leftrightarrow\dfrac{x}{3}=-\dfrac{41}{36}\Leftrightarrow x=-\dfrac{41}{12}\)

d)\(x^2=7vớix< 0\)

\(\Leftrightarrow\left(-x\right)^2=7\Leftrightarrow-x=\sqrt{7}\Leftrightarrow x=-\sqrt{7}\)

e)\(x^2-4=0với>0\)

\(\Leftrightarrow x^2=4\Leftrightarrow x=\sqrt{4}=2\)

f)\(\left(2x+7\sqrt{7}\right)^2=7\)

\(\Leftrightarrow4x^2+\sqrt{5488}+343=7\)

\(\Leftrightarrow4x^2+\sqrt{5488}=-336\)

\(\Leftrightarrow4x^2=28\left(12-\sqrt{7}\right)\Leftrightarrow x^2=\dfrac{28\left(12-\sqrt{7}\right)}{4}=7\left(12-\sqrt{7}\right)\)

\(\Leftrightarrow x=\sqrt{7\left(12-\sqrt{7}\right)}=\sqrt{84-7\sqrt{7}}\)

13 tháng 8 2018

a) \(\sqrt{x}=4\Rightarrow x=16\)

b) \(\sqrt{x-2}-3\\ \Rightarrow x-2=9\\ \Rightarrow x=11\)

c) \(x^2=7\\ \Rightarrow x=\pm\sqrt{7}\\ Vớix< 0\Rightarrow x=-\sqrt{7}\)

d) \(x^2-4=0\\\Rightarrow x=\pm2\\ Vớix>0\Rightarrow x=2 \)

7 tháng 11 2016

Bài 1:

a) Ta có: \(6=\sqrt{36}< \sqrt{37}\)

Vậy \(6< \sqrt{37}\)

b) Ta có: \(2\sqrt{3}=\sqrt{4}.\sqrt{3}=\sqrt{12}< \sqrt{18}=\sqrt{9}.\sqrt{2}=3\sqrt{2}\)

Vậy \(2\sqrt{3}< 3\sqrt{2}\)

p/s: Bạn có thể lấy số gần mà tính cũng được do mình nghĩ lớp 7 chưa học mà học rồi thì làm cách trên cho nhanh nhé.

c) Ta có: \(\sqrt{63}\approx7,4;\sqrt{35}\approx6\)

\(7,4+6=13,4< 14\Rightarrow\sqrt{63}+\sqrt{35}< 14\)

Câu 2: a) \(\sqrt{x-1}=\frac{1}{2}\Rightarrow\left(\sqrt{x-1}\right)^2=\left(\frac{1}{2}\right)^2\Rightarrow x-1=\frac{1}{4}\Rightarrow x=\frac{5}{4}\)

b) \(\sqrt{\left(x-1\right)^2}=9=\sqrt{81}\Rightarrow\left(x-1\right)^2=81\Rightarrow x-1\in\left\{\pm9\right\}\Rightarrow x\in\left\{10;-8\right\}\)

c) \(2\sqrt{3x-2}=3\Rightarrow\sqrt{3x-2}=\frac{3}{2}=\sqrt{\frac{9}{4}}\Rightarrow3x-2=\frac{9}{4}\Rightarrow x=\frac{17}{12}\)

 

7 tháng 11 2016

bn chờ mk một tí

hà nội k vội dc đâu

24 tháng 7 2019

a.\(2x^2+5x+8+\sqrt{x}=x^2+3x+35+x^2+2x-7\)

\(=2x^2+5x+8+\sqrt{x}=2x^2+5x+28\Leftrightarrow\sqrt{x}=20\Leftrightarrow x=400.\)

b.\(3\sqrt{x}+7x+5=\sqrt{x}+4x-6+3x+18\)

\(=3\sqrt{x}+7x+5=\sqrt{x}+7x+12\Leftrightarrow2\sqrt{x}=7\Leftrightarrow x=\frac{49}{4}.\)

c.\(8\sqrt{x}+2x-9=5x+7+6\sqrt{x}-3x-12.\)

\(=8\sqrt{x}+2x-9=2x+6\sqrt{x}-5\Leftrightarrow2\sqrt{x}=4\Leftrightarrow x=4.\)

d.\(2\sqrt{3x}+11x-18=5x+3+6\sqrt{3x}+6x-21\)

\(=2\sqrt{3x}+11x-18=11x+6\sqrt{3x}-19\Leftrightarrow4\sqrt{3x}=1\)

\(\Leftrightarrow\sqrt{3x}=\frac{1}{4}\Leftrightarrow3x=\frac{1}{16}\Leftrightarrow x=\frac{1}{48}.\)

24 tháng 7 2019

a) \(2x^2+5x+8+\sqrt{x}=x^2+3x+35+x^2+2x-7\)

<=> \(2x^2+5x+8+\sqrt{x}=2x^2+5x+28\)

<=> \(2x^2+5x+8+\sqrt{x}-\left(2x^2+5\right)=28\)

<=> \(\sqrt{x}+8=28\)

<=> \(\sqrt{x}=28-8\)

<=> \(\sqrt{x}=20\)

<=> \(\left(\sqrt{x}\right)^2=20^2\)

<=> x = 400

=> x = 400

b) \(3\sqrt{x}+7x+5=\sqrt{x}+4x-6+3x+18\)

<=> \(3\sqrt{x}+7x+5=7x+\sqrt{x}+12\)

<=> \(3\sqrt{x}+5=7x+\sqrt{x}+12-7x\)

<=> \(3\sqrt{x}+5=\sqrt{x}+12\)

<=> \(3\sqrt{x}=\sqrt{x}+12-5\)

<=> \(3\sqrt{x}=\sqrt{x}+7\)

<=> \(3\sqrt{x}-\sqrt{x}=7\)

<=> \(2\sqrt{x}=7\)

<=> \(\sqrt{x}=\frac{7}{2}\)

<=> \(\left(\sqrt{x}\right)^2=\left(\frac{7}{2}\right)^2\)

<=> \(x=\frac{49}{4}\)

=> \(x=\frac{49}{4}\)

c) \(8\sqrt{x}+2x-9=5x+7+6\sqrt{x}-3x-12\)

<=> \(8\sqrt{x}+2x-9=2x+6\sqrt{x}-5\)

<=> \(8\sqrt{x}-9=2x+6\sqrt{x}-5-2x\)

<=> \(8\sqrt{x}-9=6\sqrt{x}-5\)

<=> \(8\sqrt{x}=6\sqrt{x}-5+9\)

<=> \(8\sqrt{x}=6\sqrt{x}+4\)

<=> \(8\sqrt{x}-6\sqrt{x}=4\)

<=> \(2\sqrt{x}=4\)

<=> \(\sqrt{x}=2\)

<=> \(\left(\sqrt{x}\right)^2=2^2\)

<=> x = 4

=> x = 4

d) \(2\sqrt{3x}+11x-18=5x+3+6\sqrt{3x}+6x-21\)

<=> \(2\sqrt{3x}+11x-18=11x+6\sqrt{3x}-18\)

<=> \(2\sqrt{3x}+11x-18-\left(11x-18\right)=6\sqrt{3x}\)

<=>\(2\sqrt{3x}=6\sqrt{3x}\)

<=> \(2\sqrt{3x}-6\sqrt{3x}=0\)

<=>\(-4\sqrt{3x}=0\)

<=> \(\sqrt{3x}=0\)

<=> \(\left(\sqrt{3x}\right)^2=0^2\)

<=> 3x = 0

<=> x = 0

=> x = 0

22 tháng 7 2017

bn lấy máy tính mà tính ý

22 tháng 7 2017

Bài1:

Ta có:

a)\(\sqrt{\dfrac{3^2}{5^2}}=\sqrt{\dfrac{9}{25}}=\dfrac{3}{5}\)

b)\(\dfrac{\sqrt{3^2}+\sqrt{42^2}}{\sqrt{5^2}+\sqrt{70^2}}=\dfrac{\sqrt{9}+\sqrt{1764}}{\sqrt{25}+\sqrt{4900}}=\dfrac{3+42}{5+70}=\dfrac{45}{75}=\dfrac{3}{5}\)

c)\(\dfrac{\sqrt{3^2}-\sqrt{8^2}}{\sqrt{5^2}-\sqrt{8^2}}=\dfrac{\sqrt{9}-\sqrt{64}}{\sqrt{25}-\sqrt{64}}=\dfrac{3-8}{5-8}=\dfrac{-5}{-3}=\dfrac{5}{3}\)

Từ đó, suy ra: \(\dfrac{3}{5}=\sqrt{\dfrac{3^2}{5^2}}=\dfrac{\sqrt{3^2}+\sqrt{42^2}}{\sqrt{5^2}+\sqrt{70^2}}\)

Bài 2:

Không có đề bài à bạn?

Bài 3:

a)\(\sqrt{x}-1=4\)

\(\Rightarrow\sqrt{x}=5\)

\(\Rightarrow x=\sqrt{25}\)

\(\Rightarrow x=5\)

b)Vd:\(\sqrt{x^4}=\sqrt{x.x.x.x}=x^2\Rightarrow\sqrt{x^4}=x^2\)

Từ Vd suy ra:\(\sqrt{\left(x-1\right)^4}=16\)

\(\Rightarrow\left(x-1\right)^2=16\)

\(\Rightarrow\left(x-1\right)^2=4^2\)

\(\Rightarrow x-1=4\)

\(\Rightarrow x=5\)