Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ:.............
1.\(\sqrt{x^2-6x+9}=2x-1\)
\(\Leftrightarrow\sqrt{\left(x-3\right)^2}=2x-1\)
\(\Leftrightarrow\left|x-3\right|=2x-1\)
................
\(2)\sqrt{x+4\sqrt{x}+4}=5x+2\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x}+2\right)^2}=5x+2\)
\(\Leftrightarrow\left|\sqrt{x}+2\right|=5x+2\)
3) \(\sqrt{x^2-2x+1}+\sqrt{x^2+4x+4}=4\)
\(\Leftrightarrow\sqrt{\left(x-1\right)^2}+\sqrt{\left(x+2\right)^2}=4\)
\(\Leftrightarrow\left|x-1\right|+\left|x+2\right|=4\)
a/ ĐK: \(x \ge -1\). Đặt \(\sqrt{x+1}=a \ge 0\)
PT: \(\Leftrightarrow6a-3a-2a=5\)
\(\Leftrightarrow a=5\)
\(\Leftrightarrow x+1=15\Leftrightarrow x=24\) (nhận)
b,c: Hai ý này đều làm theo cách bình phương hoặc đưa về phương trình chứa dấu giá trị tuyệt đối được nhé.
b) Cách 1: ĐKXĐ: Tự tìm
\(\sqrt{x^{2}-4x+4}=2\Leftrightarrow x^{2}-4x+4=4\Leftrightarrow x(x-4)=0\)
\(\Leftrightarrow x=0\) hoặc \(x=4\) cả 2 cái này đều TMĐK
Cách 2: \((\sqrt{x^2-4x+4}=2)\)
\(\Leftrightarrow \sqrt{(x-2)^2}=2\)
\(\Leftrightarrow \mid x-2\mid=2\)
Với \(x\geq 2\) thì :
\(x-2=2 \Leftrightarrow x=4\) (nhận)
Với \(x<2\) thì
\(-x-2=2\Leftrightarrow x=0\) (nhận)
Vậy \(S={0;4}\)
c) Cách 1: \(\sqrt{x^{2}-6x+9}=x-2\Leftrightarrow \left\{\begin{matrix}x\geq 2 \\ x^{2}-6x+9=x^{2}-4x+4 \end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix}x\geq 2 \\ x=\frac{5}{2} \end{matrix}\right.\)
Nghiệm TMĐK
Cách 2: \((\sqrt{x^2-6x+9}=x-2)\)
\(\Leftrightarrow \mid x-3\mid =x-2\)
Với \(x\geq 3\) thì
\(x-3=x-2\Leftrightarrow 0x=-1\) ( vô lý)
Với \(x<3\) thì
\(-x+3=x-2\Leftrightarrow -2x=-5 \Leftrightarrow x=\frac{5}{2}\)
Vậy \(S={\frac{5}{2}}\)
d) ĐKXĐ: Tự tìm
\(\sqrt{x^{2}+4}=\sqrt{2x+3}\Leftrightarrow x^{2}+4=2x+3\Leftrightarrow x^{2}-2x+1=0\Leftrightarrow (x-1)^{2}=0\)
\(\Leftrightarrow x=1\)
e) ĐKXĐ: \(x\geq \frac{3}{2}\)
\(\frac{\sqrt{2x-3}}{\sqrt{x-1}}=2\Leftrightarrow \frac{2x-3}{x-1}=4\Rightarrow 2x-3=4x-4\Leftrightarrow x=\frac{1}{2}\)
Nghiệm không TMĐK.
Phương trình vô nghiệm.
f) ĐKXĐ: \(x\geq \frac{-15}{2}\)
\(x+\sqrt{2x+15}=0\Leftrightarrow 2x+2\sqrt{2x+15}=0\Leftrightarrow 2x+15+2\sqrt{2x+15}+1-16=0\)
\(\Leftrightarrow (\sqrt{2x+15}+1)^{2}-4^{2}=0\Leftrightarrow (\sqrt{2x+15}+5)(\sqrt{2x+15}-3)=0\)
\(\Leftrightarrow \sqrt{2x+15}-3=0\Leftrightarrow \sqrt{2x+15}=3\Leftrightarrow 2x+15=9\Leftrightarrow x=-3\) (TMĐK)
\(a,PT\Leftrightarrow\sqrt{x-1-2\sqrt{x-1}+1}=3\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}-1\right)^2}=3\)
\(\Leftrightarrow\sqrt{x-1}=4\Leftrightarrow x-1=16\Leftrightarrow x=17\)
Vậy............................................
\(b,PT\Leftrightarrow\sqrt{\left(x^2-1\right)^2}=x-1\)
\(\Leftrightarrow x^2-1=x-1\Leftrightarrow x^2=x\Rightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
Vậy...............................................
Mình hướng dẫn nhé :)
- Phương trình \(\sqrt{x-2\sqrt{x}+1}=\sqrt{x}-1\Leftrightarrow\sqrt{\left(\sqrt{x}-1\right)^2}=\sqrt{x}-1\Leftrightarrow\left|\sqrt{x}-1\right|=\sqrt{x}-1\)
Xét trường hợp để tìm nghiệm nhé :)
- \(\sqrt{4x^2-4x+1}=1-2x\Leftrightarrow\sqrt{\left(2x-1\right)^2}=1-2x\Leftrightarrow\left|2x-1\right|=1-2x\)
- \(\sqrt{x+2\sqrt{x-1}}=3\Leftrightarrow\sqrt{\left(\sqrt{x-1}+1\right)^2}=3\Leftrightarrow\left|\sqrt{x-1}+1\right|=3\) (mình sửa lại đề)
- \(\sqrt{x^2-4}=\sqrt{x^2-2x}\Leftrightarrow\sqrt{\left(x-2\right)\left(x+2\right)}=\sqrt{x\left(x-2\right)}\Leftrightarrow\sqrt{x-2}\left(\sqrt{x+2}-\sqrt{x}\right)=0\)
- \(\sqrt{x^2+5}=x+1\). Tìm điều kiện xác định rồi bình phương hai vế.
a. ĐK \(\hept{\begin{cases}x>-3\\x>-4\end{cases}\Rightarrow x>-3}\)
Pt \(\Rightarrow\left(\sqrt{\frac{1}{x+3}}-2\right)+\left(\sqrt{\frac{5}{x+4}}-2\right)=0\)
\(\Rightarrow\frac{-11-4x}{\left(x+3\right)\left(\sqrt{\frac{1}{x+3}}+2\right)}+\frac{-11-4x}{\left(x+4\right)\left(\sqrt{\frac{5}{x+4}}+2\right)}=0\)
\(\Rightarrow\left(-11-4x\right)\left(\frac{1}{\left(x+3\right)\left(\sqrt{\frac{1}{x+3}}+2\right)}+\frac{1}{\left(x+4\right)\left(\sqrt{\frac{5}{x+4}}+2\right)}\right)=0\)
Với \(x>-3\Rightarrow\frac{1}{\left(x+3\right)\left(\sqrt{\frac{1}{x+3}}+2\right)}+\frac{1}{\left(x+4\right)\left(\sqrt{\frac{5}{x+4}}+2\right)}>0\)
\(\Rightarrow-11-4x=0\Rightarrow x=-\frac{11}{4}\left(tm\right)\)
Vậy \(x=-\frac{11}{4}\)
\(\sqrt{x^2-4}-\sqrt{x+2}=0\)
\(\Leftrightarrow\sqrt{\left(x-2\right)\left(x+2\right)}-\sqrt{x+2}=0\)
\(\Leftrightarrow\sqrt{x+2}\left(\sqrt{x-2}-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-2\\x=3\end{cases}}\)
Câu a bạn bình phương 2 vế lên nha
Câu C cũng z nha bạn
1. \(\sqrt{x^2-4}-x^2+4=0\)( ĐK: \(\orbr{\begin{cases}x\ge2\\x\le-2\end{cases}}\))
\(\Leftrightarrow\sqrt{x^2-4}=x^2-4\)
\(\Leftrightarrow\left(x^2-4\right)^2=x^2-4\)
\(\Leftrightarrow\left(x^2-4\right)^2-\left(x^2-4\right)=0\)
\(\Leftrightarrow\left(x^2-4\right)\left(x^2-4-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2=4\\x^2=5\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\pm2\left(tm\right)\\x=\pm\sqrt{5}\left(tm\right)\end{cases}}\)
Vậy pt có tập no \(S=\left\{2;-2;\sqrt{5};-\sqrt{5}\right\}\)
2. \(\sqrt{x^2-4x+5}+\sqrt{x^2-4x+8}+\sqrt{x^2-4x+9}=3+\sqrt{5}\)ĐK: \(\hept{\begin{cases}x^2-4x+5\ge0\\x^2-4x+8\ge0\\x^2-4x+9\ge0\end{cases}}\)
\(\Leftrightarrow\sqrt{x^2-4x+5}-1+\sqrt{x^2-4x+8}-2+\sqrt{x^2-4x+9}-\sqrt{5}=0\)
\(\Leftrightarrow\frac{x^2-4x+4}{\sqrt{x^2-4x+5}+1}+\frac{x^2-4x+4}{\sqrt{x^2-4x+8}+2}+\frac{x^2-4x+4}{\sqrt{x^2-4x+9}+\sqrt{5}}=0\)
\(\Leftrightarrow\left(x-2\right)^2\left(\frac{1}{\sqrt{x^2-4x+5}+1}+\frac{1}{\sqrt{x^2-4x+8}+2}+\frac{1}{\sqrt{x^2}-4x+9+\sqrt{5}}\right)=0\)
Từ Đk đề bài \(\Rightarrow\frac{1}{\sqrt{x^2-4x+5}+1}+\frac{1}{\sqrt{x^2-4x+8}+2}+\frac{1}{\sqrt{x^2}-4x+9+\sqrt{5}}>0\)
\(\Rightarrow\left(x-2\right)^2=0\)
\(\Leftrightarrow x=2\left(tm\right)\)
Vậy pt có no x=2
a) Điều kiện xác định của pt :
\(\begin{cases}x^2+5x+4\ge0\\x^2+5x+2\ge0\end{cases}\) \(\Leftrightarrow\left[\begin{array}{nghiempt}x\le-4\\x\ge-1\end{array}\right.\)
Ta có : \(x^2+5x-\sqrt{x^2+5x+4}=-2\)
\(\Leftrightarrow\left(x^2+5x+4\right)-\sqrt{x^2+5x+4}-2=0\)(1)
Đặt \(t=\sqrt{x^2+5x+4},t\ge0\)
\(pt\left(1\right)\Leftrightarrow t^2-t-2=0\Leftrightarrow\left(t+1\right)\left(t-2\right)=0\Leftrightarrow\left[\begin{array}{nghiempt}t=-1\left(\text{loại}\right)\\t=2\left(\text{nhận}\right)\end{array}\right.\)
Với t = 2 ta có pt : \(x^2+5x+4=4\Leftrightarrow x\left(x+5\right)=0\Leftrightarrow\left[\begin{array}{nghiempt}x=0\left(\text{nhận}\right)\\x=-5\left(\text{nhận}\right)\end{array}\right.\)
Vậy tập nghiệm của pt : \(S=\left\{-5;0\right\}\)
b) Điều kiện xác định của pt :
\(\begin{cases}x^2-3x+2\ge0\\x+3\ge0\\x-2\ge0\\x^2+2x-3\ge0\end{cases}\) \(\Leftrightarrow x\ge2\)
Ta có ; \(\sqrt{x^2-3x+2}+\sqrt{x+03}=\sqrt{x-2}+\sqrt{x^2+2x-3}\)
\(\Leftrightarrow\sqrt{\left(x-1\right)\left(x-2\right)}+\sqrt{x+3}=\sqrt{x-2}+\sqrt{\left(x-1\right)\left(x+3\right)}\)
\(\Leftrightarrow\sqrt{x-1}\left(\sqrt{x-2}-\sqrt{x-3}\right)-\left(\sqrt{x-2}-\sqrt{x-3}\right)=0\)
\(\Leftrightarrow\left(\sqrt{x-1}-1\right)\left(\sqrt{x-2}-\sqrt{x-3}\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}\sqrt{x-1}-1=0\\\sqrt{x-2}-\sqrt{x-3}=0\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=2\left(\text{nhận}\right)\\-2=-3\left(\text{vô lí - loại}\right)\end{array}\right.\)
Vậy pt có nghiệm x = 2
\(\sqrt{x-3+2\sqrt{x-4}}=2\sqrt{x-4}-1\left(đkxđ:x\ge4\right)\)
Đặt \(x-3\)là \(u\)thì phương trình đã cho tương đương :
\(\sqrt{u+2\sqrt{u-1}}=2\sqrt{u-1}-1\)\(\left(u\ge1\right)\)
\(< =>u+2\sqrt{u-1}=2\left(u-1\right)-4\sqrt{u-1}+1\)
\(< =>u-1+6\sqrt{u-1}-2\left(u-1\right)=0\)
\(< =>6\sqrt{u-1}-\left(u-1\right)=0\)
Đặt \(\sqrt{u-1}\)là \(v\)thì phương trình tương đương :
\(6v-v^2=0\left(v\ge0\right)\)
\(< =>\orbr{\begin{cases}v=0\\v=6\end{cases}}\)
Với \(v=0< =>\sqrt{u-1}=0\)
\(< =>u=1< =>x-3=0< =>x=3\left(tm\right)\)
Với \(v=6< =>\sqrt{u-1}=6\)
\(< =>u=37< =>x-3=37< =>x=40\left(tm\right)\)
Vậy tập nghiệm của phương trình trên là {3;40}
sửa lại cho mình là 3 ( ktm )
Cái kết luận sửa lại là 40 thôi nhé