Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ ĐKXĐ \(x\ge-\frac{3}{2}\)
Ta thấy cả 2 vế đều là số không âm nên ta bình phương 2 vế được
\(3x+5+2\sqrt{\left(2x+3\right)\left(x+2\right)}\le1\)
\(\Leftrightarrow2\sqrt{\left(2x+3\right)\left(x+2\right)}\le-3x-4\)( Điều kiện \(x\le-\frac{4}{3}\))
Tiếp tục bình phương rồi rút gọn ta được
\(x^2-4x-8\ge0\)
\(\Leftrightarrow\orbr{\begin{cases}x\le2-2\sqrt{3}\\x\ge2+2\sqrt{3}\end{cases}}\)
Kết hợp tất cả ta được
\(-\frac{3}{2}\le x\le2-2\sqrt{3}\)
Câu b với d cũng chỉ cần bình phương là ra
c/ Điều kiện: \(3\le x\le8\)
Đặt \(\sqrt{\left(x-3\right)\left(8-x\right)}=a\ge0\)
Thì bài toán thành
\(a-a^2+2>0\)
\(\Leftrightarrow-1\le a\le2\)
Tới đây thì đơn giản rồi
1. \(x=5\)
2. \(x=1\)
3. \(x=1\)
4. \(x=2\)
5. \(x=0,73\)
6. \(x=2\)
7. \(x=0\)
Câu 6:
\(\hept{\begin{cases}\frac{x+3}{2x-3}-\frac{x}{2x-1}\le0\\\sqrt{x^2+3}+3< 1\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{2x^2-x+6x-3-2x^2+3x}{\left(2x-3\right)\left(2x-1\right)}\le0\\x^2+3< \left(1-3x\right)^2\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}8x-3\le0\\x^2+3< 1-6x+9x^2\end{cases}\Leftrightarrow\hept{\begin{cases}8x-3\le0\\8x^2-6x-2< 0\end{cases}\Leftrightarrow}\hept{\begin{cases}x< \frac{3}{8}\\\frac{-1}{4}x< x< \frac{1}{4}\end{cases}\Rightarrow}S\left(\frac{-1}{4};\frac{3}{8}\right)}\)
\(P=\frac{B}{A}=\frac{3\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)}.\frac{\sqrt{x}}{\left(\sqrt{x}+1\right)}=\frac{3\sqrt{x}}{\sqrt{x}-2}\)
Để \(\left|P\right|>P\Rightarrow P< 0\)
\(\Rightarrow\frac{3\sqrt{x}}{\sqrt{x}-2}< 0\Rightarrow\sqrt{x}-2< 0\Rightarrow\sqrt{x}< 2\Rightarrow x< 4\)
Mà \(x\) nguyên \(\Rightarrow x=\left\{2;3\right\}\)
ĐK x=2016
=>0>0( vô lý)
=>bất phương trình vô nghiệm