Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
<=>\(\left(\sqrt{\sqrt{2}+1}-\sqrt{\sqrt{2}-1}\right)^2=\left(\sqrt{2\left(\sqrt{2}-1\right)}\right)^2\)
<=>\(\sqrt{2}+1+\sqrt{2}-1-2\left(\sqrt{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}\right)=2\left(\sqrt{2}-1\right)\)
<=>\(2\sqrt{2}-2=2\sqrt{2}-2\left(dpcm\right)\)
¬¬¬¬¬¬hoc tot ¬¬¬¬¬¬¬
a)\(\sqrt{2x^2+8x+6}+\sqrt{x^2-1}=2x+2\)
ĐK:tự xác định
\(pt\Leftrightarrow\sqrt{2\left(x+1\right)\left(x+3\right)}+\sqrt{\left(x-1\right)\left(x+1\right)}-2\left(x+1\right)=0\)
\(\Leftrightarrow\sqrt{x+1}\left(\sqrt{2\left(x+3\right)}+\sqrt{x-1}-2\sqrt{x+1}\right)=0\)
Suy ra x=-1 là nghiệm và pt \(\sqrt{2\left(x+3\right)}+\sqrt{x-1}=2\sqrt{x+1}\)
\(\Leftrightarrow2\left(x+3\right)+x-1+2\sqrt{2\left(x+3\right)\left(x-1\right)}=4\left(x+1\right)\)
\(\Leftrightarrow2\sqrt{2\left(x+3\right)\left(x-1\right)}=x-1\)
\(\Leftrightarrow8\left(x+3\right)\left(x-1\right)-\left(x-1\right)^2=0\)
\(\Leftrightarrow\left(x-1\right)\left(8x+24-x+1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(7x+25\right)=0\Rightarrow x=1\) (thỏa và 7x+25=0 loại do điều kiện....)
b nghiệm xấu quá để mình xem lại :v
\(\Leftrightarrow\sqrt{2x+6}+\sqrt{x-1}=2\sqrt{x+1}\)
\(\Leftrightarrow\sqrt{2x+6}-2\sqrt{2}+\sqrt{x-1}=2\sqrt{x+1}-2\sqrt{2}\)
\(\Leftrightarrow\frac{2\left(x-1\right)}{\sqrt{2x+6}+2\sqrt{2}}+\sqrt{x-1}=\frac{2\sqrt{x-1}}{\sqrt{x+1}+2\sqrt{2}}\)
\(\Leftrightarrow\frac{2\sqrt{x-1}}{\sqrt{2x+6}+2\sqrt{2}}+1=\frac{2\sqrt{x-1}}{\sqrt{x+1}+1\sqrt{2}}\)
đến đây thì chịu
tìm đc 1 nghiệm là -1;1,nên bình phương lên
1/ nhân 4 cả 2 vế lên, vế trái sẽ trở thành (2x+1)(2x+2)^2(2x+3), nhân 2x+1 với 2x+3, cái bình phương phân tích ra
thành (4x^2+8x+3)(4x^2+8x+4)=72
đặt 4x^2+8x+4=a \(\left(a\ge0\right)\)
thay vào ta có (a-1)a=72 rồi bạn phân tích thành nhân tử sẽ có nghiệm là 9 và -8 loại được -8 thì nghiệm của a là 9
suy ra 2x+1=3 hoặc -3, tính ra được x rồi nhân vào với nhau
2/\(\Leftrightarrow5\sqrt{\left(x+1\right)\left(x^2-x+1\right)}=2\left[\left(x+1\right)+\left(x^2-x+1\right)\right]\)
đặt căn x+1=a, căn x^2-x+1=b (a,b>=0)
thay vào ra là \(2a^2-5ab+2b^2=0\\
\Leftrightarrow\left(a-2b\right)\left(2a-b\right)=0\)
suy ra a=2b hoặc b=2a, thay cái kia vào bình phương lên giải nốt phương trình rồi nhân nghiệm với nhau
Nghiệm nguyên.
2x+3=(2x+1)+2
\(\left(1\right)\Leftrightarrow\left[\left(2x+1\right)\left(x+1\right)\right]^2+2\left(2x+1\right)\left(x+1\right)^2=18\\ \)
2x+1 luôn lẻ---> x+1 phải chẵn --> x phải lẻ---> x=2n-1
\(\left(4n+3\right)\left(2n\right)^2\left(4n+1\right)=18\)
18 không chia hết co 4 vậy vô nghiệm nguyên.
Viết diễn dải dài suy luận logic rất nhanh
1) \(\frac{9}{x^2}+\frac{2x}{\sqrt{2x^2+9}}=1\left(ĐK:x\ne0\right)\)
Đặt: \(\sqrt{2x^2+9}=a\left(a\ge0\right)\)
\(\Leftrightarrow2x^2+9=a^2\Leftrightarrow9=a^2-2a^2\)
Khi đó pt đã cgo trở rhanhf:
\(\frac{a^2-2x^2}{x^2}+\frac{2x}{a}=1\)
\(\Leftrightarrow\left(\frac{a}{x}\right)^2-2+\frac{2x}{a}-1=0\)
\(\Leftrightarrow\left(\frac{a}{x}\right)^2+\frac{2x}{a}-3=0\) (*)
Đặt: \(\frac{a}{x}=b\) khi đó (*) trở thành:
\(b^2+\frac{2}{b}-3=0\)
\(\Leftrightarrow b^3+2-3b=0\)
\(\Leftrightarrow\left(b^3-b\right)-\left(2b-2\right)=0\)
\(\Leftrightarrow b\left(b-1\right)\left(b+1\right)-2\left(b-1\right)=0\)
\(\Leftrightarrow\left(b-1\right)\left(b^2+b-2\right)=0\)
\(\Leftrightarrow\left(b-1\right)^2\left(b+2\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}b-1=0\\b+2=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}b=1\\b=-2\end{array}\right.\)
Với: \(b=1\) ta có:
\(\frac{a}{x}=1\Leftrightarrow a=x\Leftrightarrow\sqrt{2x^2+9}=x\Leftrightarrow2x^2+9=x^2\Leftrightarrow x^2+9=0\left(loai\right)\)
Với: \(b=-2\) ta có:
\(\frac{a}{x}=-2\)
\(\Leftrightarrow a=-2x\)
\(\Leftrightarrow\sqrt{2x^2+9}=-2x\)
\(\Leftrightarrow2x^2+9=4x^2\)
\(\Leftrightarrow2x^2=9\)
\(\Leftrightarrow x^2=\frac{9}{2}\Leftrightarrow\left[\begin{array}{nghiempt}x=\frac{3}{\sqrt{2}}\\x=-\frac{3}{\sqrt{2}}\end{array}\right.\)
Thử lại ta thấy: \(x=\frac{3}{\sqrt{2}}\left(ktm\right);x=-\frac{3}{\sqrt{x}}\left(tm\right)\)
Vaayk pt đã cho có nhgieemj là \(x=-\frac{3}{\sqrt{2}}\)
Đặt \(\hept{\begin{cases}\sqrt{5-x}=a\\\sqrt{x-3}=b\end{cases}}\)
=> a2 + b2 = 2
PT \(\Leftrightarrow\frac{a^3+b^3}{a+b}=2\Leftrightarrow\frac{\left(a+b\right)\left(a^2-ab+b^2\right)}{a+b}=2\)
\(\Leftrightarrow2-ab=2\Leftrightarrow ab=0\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{5-x}=0\\\sqrt{x-3}=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=5\\x=3\end{cases}}\)
B> \(\left(x+\sqrt{x^2+2013}\right)\left(y+\sqrt{y^2+2013}\right)\)\(=2013\)
\(\Leftrightarrow\left(x+\sqrt{x^2+2013}\right)\left(y+\sqrt{y^2+2013}\right)\)\(\left(x-\sqrt{x^2+2013}\right)=2013\left(x-\sqrt{x^2+2013}\right)\)
\(\Leftrightarrow\left(x^2-x^2-2013\right)\left(y+\sqrt{y^2+2013}\right)\)\(=2013\left(x-\sqrt{x^2+2013}\right)\)
\(\Leftrightarrow-2013\left(y+\sqrt{y^2+2013}\right)\)\(=2013\left(x-\sqrt{x^2+2013}\right)\)
\(\Leftrightarrow y+\sqrt{y^2+2013}=-x+\sqrt{x^2+2013}\)
Chứng minh tương tự: \(x+\sqrt{x^2+2013}=-y+\sqrt{y^2+2013}\)
cộng vế theo vế ta được: \(x+y=-x-y\)
\(\Leftrightarrow x+y=0\Leftrightarrow x=-y\Leftrightarrow x^{2013}=-y^{2013}\)
\(\Leftrightarrow x^{2013}+y^{2013}=0\)
a,Ta có x =...
x = \(\frac{\sqrt{3}\left(\sqrt{\sqrt{3}+1}+1\right)-\sqrt{3}\left(\sqrt{\sqrt{3+1}-1}\right)}{\left(\sqrt{\sqrt{3}+1}\right)\left(\sqrt{\sqrt{3}-1}\right)}\)
x = \(\frac{\sqrt{3}\left(\sqrt{\sqrt{3}+1}+1-\sqrt{\sqrt{3}+1}+1\right)}{\sqrt{3}+1-1}\)
x = \(\frac{\sqrt{3}.2}{\sqrt{3}}\)
x = 2
sau đó thay x=2 vào A nhé.
A=2014 !!!
b) Ta có: \(x+\sqrt{3}=2\Leftrightarrow x-2=-\sqrt{3}\Leftrightarrow\left(x-2\right)^2=3\Leftrightarrow x^2-4x+1=0\)
\(B=x^5-3x^4-3x^3+6x^2-20x+2021\)
\(B=\left(x^5-4x^4+x^3\right)+\left(x^4-4x^3+x^2\right)+\left(5x^2-20x+5\right)+2016\)
\(B=x^3\left(x^2-4x+1\right)+x^2\left(x^2-4x+1\right)+5\left(x^2-4x+1\right)+2016\)
Thế \(x^2-4x+1=0\)\(\Rightarrow B=2016.\)
hạ sách nhân liên hợp =))
\(pt\Leftrightarrow\sqrt{x^4+4x^3+8x^2+8x+4}-\sqrt{x^4+2x^3+3x^2+2x+1}=2017\)
\(\Leftrightarrow\sqrt{x^4+4x^3+8x^2+8x+4}-4068290-\sqrt{x^4+2x^3+3x^2+2x+1}+4066273=0\)
\(\Leftrightarrow\left(\sqrt{x^4+4x^3+8x^2+8x+4}-4068290\right)-\left(\sqrt{x^4+2x^3+3x^2+2x+1}-4066273\right)=0\)
\(\Leftrightarrow\dfrac{x^4+4x^3+8x^2+8x+4-4068290^2}{\sqrt{x^4+4x^3+8x^2+8x+4}+4068290}-\dfrac{x^4+2x^3+3x^2+2x+1-4066273^2}{\sqrt{x^4+2x^3+3x^2+2x+1}+4066273}=0\)
\(\Leftrightarrow\dfrac{x^4+4x^3+8x^2+8x-16550983524096}{\sqrt{x^4+4x^3+8x^2+8x+4}+4068290}-\dfrac{x^4+2x^3+3x^2+2x-16534576110528}{\sqrt{x^4+2x^3+3x^2+2x+1}+4066273}=0\)
\(\Leftrightarrow\dfrac{\left(x-2016\right)\left(x+2018\right)\left(x^2+2x+4068292\right)}{\sqrt{x^4+4x^3+8x^2+8x+4}+4068290}-\dfrac{\left(x-2016\right)\left(x+2017\right)\left(x^2+x+4066274\right)}{\sqrt{x^4+2x^3+3x^2+2x+1}+4066273}=0\)
\(\Leftrightarrow\left(x-2016\right)\left(\dfrac{\left(x+2018\right)\left(x^2+2x+4068292\right)}{\sqrt{x^4+4x^3+8x^2+8x+4}+4068290}-\dfrac{\left(x+2017\right)\left(x^2+x+4066274\right)}{\sqrt{x^4+2x^3+3x^2+2x+1}+4066273}\right)=0\)
Dễ thấy: \(\dfrac{\left(x+2018\right)\left(x^2+2x+4068292\right)}{\sqrt{x^4+4x^3+8x^2+8x+4}+4068290}-\dfrac{\left(x+2017\right)\left(x^2+x+4066274\right)}{\sqrt{x^4+2x^3+3x^2+2x+1}+4066273}>0\)
Nên \(x-2016=0\Rightarrow x=2016\)
Phương pháp dành cho thường dân. Chống chỉ định những người không phải thường dân xem.
\(\sqrt{\left(x^2+2x\right)^2+4\left(x+1\right)^2}-\sqrt{x^2+\left(x+1\right)^2+\left(x^2+x\right)^2}=2017\)
\(\Leftrightarrow\sqrt{\left(x^2+2x\right)^2+4x^2+8x+4}-\sqrt{\left(x^2+x\right)^2+2x^2+2x+1}=2017\)
\(\Leftrightarrow\sqrt{\left(x^2+2x\right)^2+4\left(x^2+2x\right)+4}-\sqrt{\left(x^2+x\right)^2+2\left(x^2+x\right)+1}=2017\)
\(\Leftrightarrow\sqrt{\left(x^2+2x+2\right)^2}-\sqrt{\left(x^2+x+1\right)^2}=2017\)
\(\Leftrightarrow x^2+2x+2-x^2-x-1=2017\)
\(\Leftrightarrow x=2016\)
\(\sqrt{\left(2x-1\right)^2=3}\)
<=> |2x - 1| = 3
*) Với x >= 1/2
=> 2x - 1 = 3
<=> 2x = 4
<=> x = 2 (TM)
*) Với x < 1/2
=> -2x + 1 = 3
-2x = 2
x = -1 (TM)
Vậy x = 2 hoặc x = -1
\(\sqrt{\left(2x-1\right)^2}=3=\sqrt{9}\)
\(\Leftrightarrow\left(2x-1\right)^2=9\Leftrightarrow\left(2x-1\right)^2-3^2=0\)
\(\Leftrightarrow\left(2x-1-3\right)\left(2x-1+3\right)=0\)
\(\Leftrightarrow\left(2x-4\right)\left(2x+2\right)=0\Leftrightarrow4\left(x-2\right)\left(x+1\right)=0\)
=>\(x-1=0\Leftrightarrow x=1\)
=>\(x+1=0\Leftrightarrow x=-1\)
Vậy S = {-1;1}