Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\sqrt{\dfrac{a}{b}}+\sqrt{ab}+\dfrac{a}{b}\sqrt{\dfrac{a}{b}}\) với a>0 và b>0
b) \(\sqrt{\dfrac{m}{1-2x+x^2}}.\sqrt{\dfrac{4m-8mx+4mx^2}{81}}=\sqrt{\dfrac{m}{1-2x+x^2}}.\sqrt{\dfrac{4m\left(2-2x+x^2\right)}{81}}\)
\(=\sqrt{\dfrac{4m^2\left(1-2x+x^2\right)}{81\left(1-2x+x^2\right)}}=\sqrt{\dfrac{4m^2}{81}}=\sqrt{\dfrac{2m}{9}}\)
\(M=\sqrt{\frac{m}{1-2x+x^2}}\times\sqrt{\frac{4m-8mx+4mx^2}{81}}\)
\(=\frac{\sqrt{m}}{\sqrt{1-2x+x^2}}\times\frac{\sqrt{4m\times\left(1-2x+x^2\right)}}{\sqrt{81}}\)
\(=\frac{\sqrt{m}}{\sqrt{1-2x+x^2}}\times\frac{\sqrt{4m}\times\sqrt{1-2x+x^2}}{9}\)
\(=\frac{\sqrt{m}\times\sqrt{4m}}{9}\)
\(=\frac{2m}{9}\)
vậy . . .
\(M=\sqrt{\frac{m}{1-2x+x^2}}.\sqrt{\frac{4m-8mx+4mx^2}{81}}\)
\(=\sqrt{\frac{m}{\left(1-x\right)^2}}.\sqrt{\frac{4m\left(1-2x+x^2\right)}{81}}\)
\(=\sqrt{\frac{m}{\left(1-x\right)^2}.\frac{4m\left(1-x\right)^2}{81}}\)
\(=\frac{\sqrt{4m^2}}{81}\)
\(=\frac{\sqrt{4m^2}}{\sqrt{81}}=\frac{2m}{9}\)
Vậy : \(M=\frac{2m}{9}\)
\(\sqrt{\dfrac{m}{1-2x+x^2}}+\sqrt{\dfrac{4m-8mx+4mx^2}{81}}=\sqrt{\dfrac{m}{\left(1-x\right)^2}}+\sqrt{\dfrac{4m\left(1-2x+x^2\right)}{81}}\\ =\dfrac{\sqrt{m}}{\left|1-x\right|}+\dfrac{2\sqrt{m}\left|1-x\right|}{9}=\dfrac{9\sqrt{m}+2\sqrt{m}\left(1-x\right)^2}{\left|1-x\right|.9}\\ =\dfrac{\sqrt{m}\left(9+2-4x+2x^2\right)}{\left(x-1\right).9}\)
tới đây thì hết bt rồi
\(A=\left(\sqrt{6\left(x^2-2xy^2+y^3\right)}+\sqrt{6.4x^2y}\right).\frac{1}{\sqrt{6y}}\)
\(=\left(\sqrt{6\left(x^2-xy^2+y^3\right)}+2x\sqrt{6y}\right).\frac{1}{\sqrt{6y}}\)
\(=\left[\sqrt{6}\left(\sqrt{x^2-xy^2+y^3}+2x\sqrt{y}\right)\right].\frac{1}{\sqrt{6y}}=\sqrt{6}\left(\sqrt{x^2-xy^2+y^3}-2x\sqrt{y}\right).\frac{1}{\sqrt{6}\sqrt{y}}\)
\(=\frac{x^2-xy^2+y^3}{\sqrt{y}}-\frac{2x\sqrt{y}}{\sqrt{y}}=\frac{x^2-xy^2+y^3}{\sqrt{y}}-2x\)
mik chỉ lm đến đây đc thui
a) \(\frac{\sqrt{4mn^2}}{\sqrt{20m}}=\sqrt{\frac{4mn^2}{20m}}=\sqrt{\frac{n^2}{5}}=\frac{n}{\sqrt{5}}\)
b) \(\frac{\sqrt{16a^4b^6}}{\sqrt{12a^6b^6}}=\sqrt{\frac{16a^4b^6}{12a^6b^6}}=\sqrt{\frac{4}{3a^2}}=\frac{2}{\sqrt{3}.\left|a\right|}=-\frac{2}{a\sqrt{3}}\)
d) \(\frac{x\sqrt{x}-y\sqrt{y}}{\sqrt{x}-\sqrt{y}}=\frac{\left(\sqrt{x}-\sqrt{y}\right)\left(x+\sqrt{xy}+y\right)}{\sqrt{x}-\sqrt{y}}=x+\sqrt{xy}+y\)
e) \(\sqrt{\frac{x-2\sqrt{x}+1}{x+2\sqrt{x}+1}}=\sqrt{\frac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}+1\right)^2}}=\frac{\left|\sqrt{x}-1\right|}{\sqrt{x}+1}\)
\(M=\left(\frac{1}{x-\sqrt{x}}+\frac{1}{\sqrt{x}-1}\right):\frac{\sqrt{x}+1}{x-2\sqrt{x}+1}\)
\(M=\left(\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}+\frac{\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}\right).\frac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}+1}\)
\(M=\frac{1+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}+\frac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}+1}\)
\(M=\frac{\sqrt{x}-1}{\sqrt{x}}\)
vậy \(M=\frac{\sqrt{x}-1}{\sqrt{x}}\)
\(\sqrt{\frac{m}{1-2x+x^2}}.\sqrt{\frac{4m-8mx+4mx^2}{81}}=\sqrt{\frac{m}{\left(x-1\right)^2}}.\sqrt{\frac{4m\left(1-2x+x^2\right)}{81}}\)
\(=\sqrt{\frac{m}{\left(x-1\right)^2}}.\sqrt{\frac{4m\left(x-1\right)^2}{81}}=\frac{\sqrt{m}}{\left|x-1\right|}.\frac{2\sqrt{m}.\left|x-1\right|}{9}=\frac{2m}{9}\)
\(x\ne1\) chứ không phải x>1 nên không thể ghi |x-1|=x-1 nhé Despacito
A..mk vua nghi ra bai nay
\(\sqrt{\frac{m}{x^2-2x+1}}.\sqrt{\frac{4m-8mx+4mx^2}{81}}\)
\(=\sqrt{\frac{m}{\left(x-1\right)^2}}.\sqrt{\frac{4m\left(1-2x+x^2\right)}{81}}\)
\(=\frac{\sqrt{m}}{\left|x-1\right|}.\frac{\sqrt{4m\left(x-1\right)^2}}{9}\) ( Thoa man DKXD \(m>0;x\ne1\)
\(=\frac{\sqrt{m}}{x-1}.\frac{2\left(x-1\right).\sqrt{m}}{9}\)
\(=\frac{2m}{9}\)
ko biet co dung ko nua