Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TL:
1đk:x<1
.\(1+3x-1=9x^2\)
\(3x=9x^2\)
x=3x\(^2\)
=>x=0(ktm) hoặc x= \(\frac{1}{3}\left(tm\right)\)
vậy x=\(\frac{1}{3}\)
hc tốt:)
1) đk: \(x\ge1\)
Ta có: \(\sqrt{x-1}-\sqrt{2x\left(x-1\right)}=0\)
\(\Leftrightarrow\sqrt{x-1}=\sqrt{2x\left(x-1\right)}\)
\(\Leftrightarrow x-1=2x^2-2x\)
\(\Leftrightarrow2x^2-3x+1=0\)
\(\Leftrightarrow\left(2x^2-2x\right)-\left(x-1\right)=0\)
\(\Leftrightarrow\left(2x-1\right)\left(x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\left(ktm\right)\\x=1\left(tm\right)\end{cases}}\)
Vậy x = 1
2) đk: \(x\ge\frac{1}{2}\)
Ta có: \(\sqrt{5x^2}=2x-1\)
\(\Leftrightarrow5x^2=\left(2x-1\right)^2\)
\(\Leftrightarrow5x^2=4x^2-4x+1\)
\(\Leftrightarrow x^2+4x-1=0\)
\(\Leftrightarrow\left(x+2\right)^2-5=0\)
\(\Leftrightarrow\left(x+2-\sqrt{5}\right)\left(x+2+\sqrt{5}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-2+\sqrt{5}\left(ktm\right)\\x=-2-\sqrt{5}\left(ktm\right)\end{cases}}\)
=> PT vô nghiệm
3) đk: \(x\ge-1\)
Ta có: \(\sqrt{x+1}+\sqrt{9x+9}=4\)
\(\Leftrightarrow\sqrt{x+1}+3\sqrt{x+1}=4\)
\(\Leftrightarrow4\sqrt{x+1}=4\)
\(\Leftrightarrow x+1=1\)
\(\Rightarrow x=0\)
4) đk: \(x\ge2\)
Ta có: \(\sqrt{x-2}-\sqrt{x\left(x-2\right)}=0\)
\(\Leftrightarrow\sqrt{x-2}=\sqrt{x\left(x-2\right)}\)
\(\Leftrightarrow x-2=x\left(x-2\right)\)
\(\Leftrightarrow x\left(x-2\right)-\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\left(ktm\right)\\x=2\left(tm\right)\end{cases}}\)
Vậy x = 2
6) đk: \(x\ge-\frac{7}{5}\)
Ta có: \(\frac{\sqrt{2x-3}}{\sqrt{x-1}}=2\)
\(\Leftrightarrow\frac{2x-3}{x-1}=2\)
\(\Leftrightarrow2x-3=2x-2\)
\(\Leftrightarrow0x=1\) vô lý
=> PT vô nghiệm
a/
Đặt \(\left\{{}\begin{matrix}\sqrt[3]{7-x}=a\\\sqrt[3]{x-5}=b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a^3+b^3=3\\a^3-b^3=2\left(6-x\right)\end{matrix}\right.\) với \(a+b\ne0\)
Ta có hệ:
\(\left\{{}\begin{matrix}a^3+b^3=2\\\frac{a-b}{a+b}=\frac{a^3-b^3}{2}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a^3+b^3=2\\\frac{a-b}{a+b}=\frac{\left(a-b\right)\left(a^2+ab+b^2\right)}{2}\end{matrix}\right.\)
TH1: \(\left\{{}\begin{matrix}a^3+b^3=2\\a-b=0\end{matrix}\right.\) \(\Rightarrow a=b=1\Rightarrow\left\{{}\begin{matrix}\sqrt[3]{7-x}=1\\\sqrt[3]{x-5}=1\end{matrix}\right.\) \(\Rightarrow x=6\)
TH2: \(\left\{{}\begin{matrix}a^3+b^3=2\\\frac{1}{a+b}=\frac{a^2+ab+b^2}{2}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a^3+b^3=2\\\frac{1}{a+b}=\frac{a^2+ab+b^2}{a^3+b^3}=\frac{a^2+ab+b^2}{\left(a+b\right)\left(a^2-ab+b^2\right)}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a^3+b^3=2\\\frac{a^2+ab+b^2}{a^2-ab+b^2}=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a^3+b^3=2\\ab=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}a=0\\b^3=2\end{matrix}\right.\\\left\{{}\begin{matrix}b=0\\a^3=2\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=7\\x=5\end{matrix}\right.\)
b/
Lập phương 2 vế:
\(\left(\sqrt[3]{x+1}+\sqrt[3]{x-1}\right)^3=5x\)
\(\Leftrightarrow x+1+x-1+3\sqrt[3]{\left(x^2-1\right)}\left(\sqrt[3]{x+1}+\sqrt[3]{x-1}\right)=5x\)
\(\Leftrightarrow2x+3\sqrt[3]{x^2-1}\left(\sqrt[3]{5x}\right)=5x\)
\(\Leftrightarrow x=\sqrt[3]{5x\left(x^2-1\right)}\)
\(\Leftrightarrow x^3=5x\left(x^2-1\right)\)
\(\Leftrightarrow x\left(5\left(x^2-1\right)-x^2\right)=0\)
\(\Leftrightarrow x\left(4x^2-5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\frac{\sqrt{5}}{2}\\x=-\frac{\sqrt{5}}{2}\end{matrix}\right.\)
\(3x-7\sqrt{x}+4=0\)
\(3x-3\sqrt{x}-4\sqrt{x}+4=0\)
\(3\sqrt{x}\left(\sqrt{x}-1\right)-4\left(\sqrt{x}-1\right)=0\)
\(\left(\sqrt{x}-1\right)\left(3\sqrt{x}-4\right)=0\)
\(\orbr{\begin{cases}\sqrt{x}-1=0\\3\sqrt{x}-4=0\end{cases}}\Rightarrow\orbr{\begin{cases}\sqrt{x}=1\\3\sqrt{x}=4\end{cases}}\Rightarrow\orbr{\begin{cases}x=1\\x=\frac{16}{9}\end{cases}}\)
ĐK: \(x\ge1\)
\(\frac{1}{2}\sqrt{x-1}-\frac{3}{2}\sqrt{9x-9}+24\sqrt{\frac{x-1}{64}}=-17\)
<=> \(\frac{1}{2}\sqrt{x-1}-\frac{3}{2}\sqrt{9\left(x-1\right)}+24\sqrt{\frac{1}{64}\left(x-1\right)}=-17\)
<=> \(\frac{1}{2}\sqrt{x-1}-\frac{9}{2}\sqrt{x-1}+3\sqrt{x-1}=-17\)
<=> \(-\sqrt{x-1}=-17\)
<=> \(x-1=17^2\)
<=> \(x=290\)
Vậy....
a) \(\left\{{}\begin{matrix}x\ge0\\-\sqrt{x+7}< 0\\-5x-4\ne0\\-3x+2\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x+7>0\\-5x\ne4\\-3x\ne-2\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x>-7\\x\ne\frac{-4}{5}\\x\ne\frac{2}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x\ne\frac{2}{3}\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}x\ge0\\x+4\ne0\\x-2\ge0\\-2x-10\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x\ne-4\\x\ge2\\-2x\ne10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge2\\x\ne-5\end{matrix}\right.\Leftrightarrow x\ge2\)
c) \(\left\{{}\begin{matrix}x\ge0\\-x-3\ne0\\2x+3\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x\ne-3\\x\ne-\frac{3}{2}\end{matrix}\right.\Leftrightarrow x\ge0\)
d) \(\left\{{}\begin{matrix}2x-7\ge0\\x\ge0\\3x-4\ne0\\x-3\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge\frac{7}{2}\\x\ge0\\x\ne\frac{4}{3}\\x\ne3\end{matrix}\right.\Leftrightarrow x\ge\frac{7}{2}\)
x=0 thế củng hỏi
x>=-3>-7/5