\(\sqrt{\frac{50a}{3}}\)*\(\sqrt{\frac{3a}{2}}\)-3a (a>0)<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 6 2019

1) \(\sqrt{\frac{24}{3}}\cdot\sqrt{\frac{3a}{8}}=\sqrt{\frac{72a}{24}}=\sqrt{3a}\)

2) \(\sqrt{13a}\cdot\sqrt{\frac{52}{a}}=\sqrt{\frac{13a\cdot52}{a}}=\sqrt{676}=26\)

3) \(\sqrt{5a}\cdot\sqrt{45a}-3a=\sqrt{225a^2}-3a=15a-3a=12a\)

4) \(\left(3-a\right)^2-\sqrt{0,2}\cdot\sqrt{180a^2}=a^2-6a+9-\sqrt{36a^2}=a^2-6a+9-6a=a^2-12a+9\)

24 tháng 6 2017

1) \(\frac{1}{a-b}\cdot\sqrt{a^4\cdot\left(a-b\right)^2}=\frac{1}{a-b}\cdot a^2\cdot\left|a-b\right|=a^2\)(Vì a > b => a - b > 0 và a^2 luôn dương với mọi a)

2) \(\sqrt{\frac{2a}{3}}\cdot\sqrt{\frac{3a}{8}}=\sqrt{\frac{6a^2}{24}}=\sqrt{\frac{a^2}{4}}=\frac{a}{2}\)(vì \(a\ge0\))

3) \(\sqrt{13}a\cdot\sqrt{\frac{52}{a}}=\frac{a\cdot\sqrt{13}\cdot\sqrt{4\cdot13}}{\sqrt{a}}=\frac{2a\cdot\sqrt{13\cdot13}}{\sqrt{a}}=26\sqrt{a}\)(vì a > 0)

10 tháng 10 2019

b) Ta có:

\(\frac{a}{\sqrt{b^2+3}}+\frac{a}{\sqrt{b^2+3}}+\frac{b^2+3}{8}+\frac{a^2}{2}\)\(\ge\)\(4\sqrt[4]{\frac{a^4}{16}}=2a\)

\(\frac{b}{\sqrt{c^2+3}}+\frac{b}{\sqrt{c^2+3}}+\frac{c^2+3}{8}+\frac{b^2}{2}\ge4\sqrt[4]{\frac{b^4}{16}}=2b\)

\(\frac{c}{\sqrt{a^2+3}}+\frac{c}{\sqrt{a^2+3}}+\frac{a^2+3}{8}+\frac{c^2}{2}\ge4\sqrt[4]{\frac{c^4}{16}}=2c\)

Cộng lại ta đươc:

\(2\left(\frac{a}{\sqrt{b^2+3}}+\frac{b}{\sqrt{c^2+3}}+\frac{c}{\sqrt{a^2+3}}\right)+\)\(\frac{5\left(a^2+b^2+c^2\right)+9}{8}\)\(\ge2\left(a+b+c\right)\)

\(2\left(\frac{a}{\sqrt{b^2+3}}+\frac{b}{\sqrt{c^2+3}}+\frac{c}{\sqrt{a^2+3}}\right)\ge\)\(6-\frac{5\left(a^2+b^2+c^2\right)+9}{8}\)(1)

Lại có: \(a^2+1\ge2a\); \(b^2+1\ge2b\); \(c^2+1\ge2c\)

Suy ra \(a^2+b^2+c^2\ge2\left(a+b+c\right)-3=3\)

Khi đó (1)⇔ \(2\left(\frac{a}{\sqrt{b^2+3}}+\frac{b}{\sqrt{c^2+3}}+\frac{c}{\sqrt{a^2+3}}\right)\ge\)\(6-\frac{5.3+9}{8}=3\)

\(\frac{a}{\sqrt{b^2+3}}+\frac{b}{\sqrt{c^2+3}}+\frac{c}{\sqrt{a^2+3}}\ge\frac{3}{2}\)

Dấu "=" xảy ra ⇔ \(a=b=c=1\)

NV
10 tháng 10 2019

\(\left(a^2+3b^2\right)\left(1+3\right)\ge\left(a+3b\right)^2\Rightarrow\sqrt{a^2+3b^2}\ge\frac{a+3b}{2}\)

\(\Rightarrow P=\sum\frac{ab}{\sqrt{a^2+3b^2}}\le2\sum\frac{ab}{a+3b}=2\sum\frac{ab}{a+b+b+b}\)

\(\Rightarrow P\le\frac{1}{8}\sum ab\left(\frac{1}{a}+\frac{3}{b}\right)=\frac{1}{8}\sum\left(3a+b\right)=\frac{1}{2}\left(a+b+c\right)=\frac{3}{2}\)

"=" \(\Leftrightarrow a=b=c=1\)

23 tháng 7 2020

\(B=\frac{2}{x^2-y^2}\cdot\sqrt{\frac{9\left(x^2+2xy+y^2\right)}{4}}=\frac{2}{\left(x-y\right)\left(x+y\right)}\cdot\sqrt{\frac{9\left(x+y\right)^2}{4}}\)
\(=\frac{2}{\left(x-y\right)\left(x+y\right)}\cdot\frac{\sqrt{9\left(x+y\right)^2}}{\sqrt{4}}=\frac{2}{\left(x-y\right)\left(x+y\right)}\cdot\frac{3\left(x+y\right)}{2}\)(vì x > -y <=> x + y >  0)

\(=\frac{3}{x-y}\)

\(C=\sqrt{\frac{2a}{3}}.\sqrt{\frac{3a}{8}}=\sqrt{\frac{2a}{3}\cdot\frac{3a}{8}}=\sqrt{\frac{6a^2}{24}}=\sqrt{\frac{a^2}{4}}=\frac{a}{2}\)(vì a > = 0)

\(D=\frac{1}{a-b}\cdot\sqrt{a^4\left(a-b\right)^2}=\frac{1}{a-b}\cdot a^2\left(a-b\right)=a^2\)(a > b > 0)

23 tháng 7 2020

câu cuối điều kiện là a>b

\(\frac{1}{a-b}\sqrt{a^4\left(a-b\right)^2}=\frac{a^2\left|a-b\right|}{a-b}=\frac{a^2\left(a-b\right)}{a-b}=a^2\) (vì a>b)

a: \(=-10\sqrt{2}+10-\left(18-2\cdot3\sqrt{2}\cdot5+25\right)\)

\(=-10\sqrt{2}+19-43+30\sqrt{2}\)

\(=-24+20\sqrt{2}\)

b: \(=2\sqrt{3a}-5\sqrt{3a}+a\cdot\sqrt{\dfrac{27}{4a}}-\dfrac{2}{5}\cdot10a\sqrt{3a}\)

\(=-3\sqrt{3a}-4a\sqrt{3a}+\sqrt{\dfrac{27a}{4}}\)

\(=-3\sqrt{3a}-4a\sqrt{3a}+\dfrac{3}{2}\sqrt{3a}\)

\(=\sqrt{3a}\left(-\dfrac{3}{2}-4a\right)\)

11 tháng 8 2017

Bài 1: 

Ta có:

\(\left(a-b+c\right)^3=a^3-b^3+c^3-3a^2b+3a^2c+3ab^2+3b^2c+3ac^2-3bc^2-6abc\)

\(\Rightarrow\left(\sqrt[3]{\frac{1}{9}}-\sqrt[3]{\frac{2}{9}}+\sqrt[3]{\frac{4}{9}}\right)^3=\frac{1}{9}-\frac{2}{9}+\frac{4}{9}-\frac{1}{3}.\sqrt[3]{2}+\frac{1}{3}.\sqrt[3]{4}+\frac{1}{3}.\sqrt[3]{4}+\frac{2}{3}.\sqrt[3]{2}\)

\(+\frac{2}{3}.\sqrt[3]{2}-\frac{2}{3}.\sqrt[3]{4}-\frac{4}{3}=\sqrt[3]{2}-1\)

\(\Rightarrow\sqrt[3]{\sqrt[3]{2}-1}=\sqrt[3]{\frac{1}{9}}-\sqrt[3]{\frac{2}{9}}+\sqrt[3]{\frac{4}{9}}\)

26 tháng 7 2019

Ta có:

\(\frac{a+b}{\sqrt{a\left(a+3b\right)}+\sqrt{b\left(b+3a\right)}}=\frac{2\left(a+b\right)}{\sqrt{4a\left(a+3b\right)}+\sqrt{4b\left(b+3a\right)}}\) (nhân 2 vào cả tử và mẫu)

\(\ge\frac{2\left(a+b\right)}{\frac{4a+a+3b}{2}+\frac{4b+b+3a}{2}}=\frac{4\left(a+b\right)}{8\left(a+b\right)}=\frac{1}{2}^{\left(đpcm\right)}\) (áp dụng BĐT Cô si vào cái mẫu)

Đẳng thức xảy ra khi \(\left\{{}\begin{matrix}4a=a+3b\\4b=b+3a\end{matrix}\right.\Leftrightarrow a=b\)

26 tháng 7 2019

Áp dụng BĐT Côsi ta có:

\( \sqrt {4a\left( {3a + b} \right)} \le \dfrac{{4a + 3a + b}}{2} = \dfrac{{7a + b}}{2}\\ \Rightarrow \sqrt {a\left( {3a + b} \right)} \le \dfrac{{7a + b}}{4}\\ \sqrt {4b\left( {3b + a} \right)} \le \dfrac{{4b + 3b + a}}{2} = \dfrac{{7b + a}}{2}\\ \Rightarrow \sqrt {b\left( {3b + a} \right)} \le \dfrac{{7b + a}}{4}\\ \Rightarrow \sqrt {a\left( {3a + b} \right)} + \sqrt {b\left( {3b + a} \right)} \le \dfrac{{7b + a + 7a + b}}{4} = 2\left( {a + b} \right)\\ \Rightarrow \dfrac{{a + b}}{{\sqrt {a\left( {3a + b} \right)} + \sqrt {b\left( {3b + a} \right)} }} \ge \dfrac{1}{2} \)

Dấu "=" xảy ra\(\left\{{}\begin{matrix}4a=3a+b\\4b=3b+a\end{matrix}\right.\Leftrightarrow a=b\)

9 tháng 6 2019

a/   \(\sqrt{\frac{2a}{3}}\cdot\sqrt{\frac{3a}{8}}\)

\(=\sqrt{\frac{2a}{3}\cdot\frac{3a}{8}}=\sqrt{\frac{6a^2}{24}}=\sqrt{\frac{a^2}{4}}=\sqrt{\frac{a^2}{2^2}}=\sqrt{\left(\frac{a}{2}\right)^2}=\left|\frac{a}{2}\right|\)

mak ta có \(a\ge0\)

\(\Rightarrow\left|\frac{a}{2}\right|=\frac{a}{2}\)\(\Rightarrow\sqrt{\frac{2a}{3}}\cdot\sqrt{\frac{3a}{8}}=\frac{a}{2}\)

b/ \(\sqrt{13a}\cdot\sqrt{\frac{52}{a}}\)

\(=\sqrt{13a\cdot\frac{52}{a}}=\sqrt{\frac{13a\cdot52}{a}}=\sqrt{13\cdot52}=\sqrt{13\cdot13\cdot4}=\sqrt{13^2\cdot2^2}=\sqrt{\left(13\cdot2\right)^2}=13\cdot2=26\)

c/ \(\sqrt{5a}\cdot\sqrt{45}-3a\)

\(=\sqrt{5a\cdot45a}-3a=\sqrt{5a\cdot5a\cdot9}-3a\)

                                        \(=\sqrt{5^2\cdot a^2\cdot3^2}-3a=\left|5\cdot a\cdot3\right|-3a\)

                                                                                      \(=15\left|a\right|-3a\)

 Có \(a\ge0\Rightarrow\left|a\right|=a\)

\(\Rightarrow15\left|a\right|-3a=15a-3a=12a\)

\(\Rightarrow\sqrt{5a}\cdot\sqrt{45}-3a=12a\)

  d/ \(\left(3-a\right)^2-\sqrt{0,2}\cdot\sqrt{180a^2}\)

\(=\left(3-a\right)^2-\sqrt{0,2\cdot180a^2}\)

\(=\left(3-a\right)^2-\sqrt{0,2\cdot9\cdot2\cdot10\cdot a^2}\)

\(=\left(3-a\right)^2-\sqrt{4\cdot9\cdot a^2}\)

\(=\left(3-a\right)^2-\sqrt{2^2\cdot3^2\cdot a^2}\)

\(=\left(3-a\right)^2-\left|2\cdot3\cdot a\right|\)

\(=\left(3-a\right)^2-6\left|a\right|=9-6a+a^2-6\left|a\right|\)

Chia làm 2 Trường Hợp:

 + TH1 : \(9-6a+a^2-6a=9-12a+a^2\left(a\ge0\right)\)

+  TH2 : \(9-6a+a^2-\left(-6a\right)=9+a^2\left(a< 0\right)\)