Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 3:
\(C=\dfrac{3\sqrt{x}-x+x+9}{9-x}:\dfrac{3\sqrt{x}+1-\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}-3\right)}\)
\(=\dfrac{-3\left(\sqrt{x}+3\right)}{x-9}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)}{2\sqrt{x}+4}\)
\(=\dfrac{-3\sqrt{x}}{2\sqrt{x}+4}\)
Để C<-1 thì C+1<0
=>-3 căn x+2 căn x+4<0
=>-căn x<-4
=>x>16
\(< =>\sqrt[3]{x+5}=-2\)
<=> \(\left(\sqrt[3]{x+5}\right)^3=-8\)
<=> \(x+5=-8\)
<=> x=-13
a/ \(\dfrac{1}{2}.\sqrt{x-1}-\dfrac{3}{2}.\sqrt{9x-9}+24.\sqrt{\dfrac{x-1}{64}}=-17\) ( đkxđ : \(x\ge1\) )
\(\Leftrightarrow\dfrac{1}{2}.\sqrt{x-1}-\dfrac{3}{2}.\sqrt{3^2\left(x-1\right)}+24.\sqrt{\dfrac{x-1}{8^2}}=-17\)
\(\Leftrightarrow\dfrac{1}{2}.\sqrt{x-1}-\dfrac{3.3}{2}.\sqrt{x-1}+\dfrac{24}{8}\sqrt{x-1}=-17\)
\(\Leftrightarrow\) \(\dfrac{1}{2}\sqrt{x-1}-\dfrac{9}{2}\sqrt{x-1}+3\sqrt{x-1}=-17\)
\(\Leftrightarrow\left(\sqrt{x-1}\right)\left(\dfrac{1}{2}-\dfrac{9}{2}+3\right)=-17\)
\(\Leftrightarrow\sqrt{\left(x-1\right)}.\left(-1\right)=-17\)
\(\Leftrightarrow\sqrt{x-1}=\dfrac{-17}{-1}=17\)
\(\Leftrightarrow\left(\sqrt{x-1}\right)^2=17^2\)
\(\Leftrightarrow x-1=289\)
\(\Leftrightarrow x=289+1=290\)
vậy x= 290 là nghiệm của phương trình a
b/ \(3x-7\sqrt{x}+4=0\) ( đkxđ : \(x\ge0\) )
\(\Leftrightarrow3x-3\sqrt{x}-4\sqrt{x}+4=0\)
\(\Leftrightarrow3\sqrt{x}\left(\sqrt{x}-1\right)-4\left(\sqrt{x}-1\right)=0\)
\(\Leftrightarrow\left(3\sqrt{x}-4\right)\left(\sqrt{x}-1\right)=0\) \(\Leftrightarrow\left[{}\begin{matrix}3\sqrt{x}-4=0\\\sqrt{x}-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=\dfrac{4}{3}\\\sqrt{x}=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{16}{9}\\x=1\end{matrix}\right.\)
vậy phương trình có tập nghiệm S=\(\left\{1;\dfrac{16}{9}\right\}\)
c/ \(-5x+7\sqrt{x}+12=0\) ( đkxđ: \(x\ge0\) )
\(\Leftrightarrow-\left(5x+5\sqrt{x}-12\sqrt{x}-12\right)=0\)
\(\Leftrightarrow-\left[5\sqrt{x}\left(\sqrt{x}+1\right)-12\left(\sqrt{x}+1\right)\right]\)= 0
\(\Leftrightarrow-\left(5\sqrt{x}-12\right)\left(\sqrt{x}+1\right)=0\)
vì \(x\ge0\Rightarrow\sqrt{x}\ge0\Leftrightarrow\sqrt{x}+1>0\)
\(\Rightarrow5\sqrt{x}-12=0\)
\(\Leftrightarrow\sqrt{x}=\dfrac{12}{5}\Rightarrow x=\dfrac{144}{25}\)
vậy \(x=\dfrac{144}{25}\) là nghiệm của phương trình c
Câu đầu tiên: \(\sqrt{18-\sqrt{128}}=\sqrt{16-2\sqrt[]{16}\sqrt{2}+2}=\sqrt{\left(\sqrt{16}-\sqrt{2}\right)^2}=\sqrt{16}-\sqrt{2}=4-\sqrt{2}\)
CM\(\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}=2\)
Biến đổi vế trái ta có:
\(VT^2=\left(\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}\right)^2=4+\sqrt{7}-2\sqrt{\left(4+\sqrt{7}\right)\left(\sqrt{4-\sqrt{7}}\right)}+4-\sqrt{7}=8-2\sqrt{16-7}=8-2\sqrt{9}=8-2.3=2\Rightarrow VT=\sqrt{2}\)
1. ĐKXĐ: $x\in\mathbb{R}$
PT $\Leftrightarrow 4x=\sqrt{(3x+1)^2}$
\(\Leftrightarrow \left\{\begin{matrix} x\geq 0\\ (4x)^2=(3x+1)^2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq 0\\ (4x-3x-1)(4x+3x+1)=0\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} x\geq 0\\ (x-1)(7x+1)=0\end{matrix}\right.\Leftrightarrow x=1\)
Vậy $x=1$ là nghiệm của pt.
2. ĐKXĐ: $x\geq -5$
PT $\Leftrightarrow \sqrt{4}.\sqrt{x+5}-3\sqrt{5+x}+\frac{4}{3}.\sqrt{9}.\sqrt{x+5}=0$
$\Leftrightarrow 2\sqrt{x+5}-3\sqrt{x+5}+4\sqrt{x+5}=0$
$\Leftrightarrow 3\sqrt{x+5}=0$
$\Leftrightarrow \sqrt{x+5}=0$
$\Leftrightarrow x=-5$
\(\sqrt{\dfrac{72x}{128}}=\dfrac{3}{4}\)
\(\Leftrightarrow x\cdot\dfrac{9}{16}=\dfrac{9}{16}\)
hay x=1