\(\sqrt{\dfrac{1}{9}}. \sqrt{0,81} .\sqrt{0,09}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 6 2021

`\sqrt{1/9}.\sqrt{0,81}.\sqrt{0,09}`

`=\sqrt{(1/3)^2}.\sqrt{(0,9)^2}.\sqrt{(0,3)^2}`

`=1/3*0,9.0,3`

`=3/10*3/10`

`=9/100*

10 tháng 6 2021

Em tưởng nhân lại với nhau ạ :v

Bài 1: Tính

a) Ta có: \(\left(\sqrt{3}+2\right)^2\)

\(=\left(\sqrt{3}\right)^2+2\cdot\sqrt{3}\cdot2+2^2\)

\(=3+4\sqrt{3}+4\)

\(=7+4\sqrt{3}\)

b) Ta có: \(-\left(\sqrt{2}-1\right)^2\)

\(=-\left[\left(\sqrt{2}\right)^2-2\cdot\sqrt{2}\cdot1+1^2\right]\)

\(=-\left(2-2\sqrt{2}+1\right)\)

\(=-\left(3-2\sqrt{2}\right)\)

\(=2\sqrt{2}-3\)

Bài 2: Tính

a) Ta có: \(0.5\cdot\sqrt{100}-\sqrt{\frac{25}{4}}\)

\(=\frac{1}{2}\cdot10-\frac{5}{2}\)

\(=5-\frac{5}{2}\)

\(=\frac{5}{2}\)

b) Ta có: \(\left(\sqrt{1\frac{9}{16}}-\sqrt{\frac{9}{16}}\right):5\)

\(=\left(\sqrt{\frac{25}{16}}-\frac{3}{4}\right)\cdot\frac{1}{5}\)

\(=\left(\frac{5}{4}-\frac{3}{4}\right)\cdot\frac{1}{5}\)

\(=\frac{2}{4}\cdot\frac{1}{5}\)

\(=\frac{1}{10}\)

Bài 3: So sánh

a) Ta có: \(3\sqrt{2}=\sqrt{3^2\cdot2}=\sqrt{18}\)

\(2\sqrt{3}=\sqrt{2^2\cdot3}=\sqrt{12}\)

\(\sqrt{18}>\sqrt{12}\)(Vì 18>12)

nên \(3\sqrt{2}>2\sqrt{3}\)

\(\Leftrightarrow\sqrt{3\sqrt{2}}>\sqrt{2\sqrt{3}}\)

b) Ta có: \(\left(15-2\sqrt{10}\right)^2\)

\(=225-2\cdot15\cdot2\sqrt{10}+\left(2\sqrt{10}\right)^2\)

\(=225-60\sqrt{10}+40\)

\(=265-60\sqrt{10}\)

\(=135+130-60\sqrt{10}\)

Ta có: \(\left(3\sqrt{15}\right)^2=3^2\cdot\left(\sqrt{15}\right)^2=9\cdot15=135\)

Ta có: \(130-60\sqrt{10}\)

\(=\sqrt{16900}-\sqrt{36000}< 0\)(Vì 16900<36000)

\(\Leftrightarrow130-60\sqrt{10}+135< 135\)(cộng hai vế của BĐT cho 135)

\(\Leftrightarrow\left(15-2\sqrt{10}\right)^2< \left(3\sqrt{15}\right)^2\)

\(\Leftrightarrow15-2\sqrt{10}< 3\sqrt{15}\)

\(\Leftrightarrow\frac{15-2\sqrt{10}}{3}< \frac{3\sqrt{15}}{3}=\sqrt{15}\)

hay \(\frac{15-2\sqrt{10}}{3}< \sqrt{15}\)

9 tháng 9 2020

phần a của 3 bài đều easy mà cả 3 bài đều easy

NV
5 tháng 6 2019

ĐKXĐ:...

\(A=\left(\frac{\sqrt{a}+2}{\sqrt{a}\left(\sqrt{a}+2\right)}-\frac{\sqrt{a}-1}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\right).\frac{\sqrt{a}+1}{\sqrt{a}}=\left(\frac{1}{\sqrt{a}}-\frac{1}{\sqrt{a}+1}\right).\frac{\left(\sqrt{a}+1\right)}{\sqrt{a}}\)

\(=\frac{1}{\sqrt{a}\left(\sqrt{a}+1\right)}.\frac{\left(\sqrt{a}+1\right)}{\sqrt{a}}=\frac{1}{a}\)

\(C=\left(\frac{\left(\sqrt{x}+1\right)\left(2\sqrt{x}-1\right)}{-\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}+\frac{\sqrt{x}\left(\sqrt{x}+1\right)\left(2\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right).\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{2\sqrt{x}-1}\)

\(=\left(\frac{\left(\sqrt{x}+1\right)}{-\left(\sqrt{x}+1\right)}+\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{x+\sqrt{x}+1}\right).\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(2\sqrt{x}-1\right)}.\frac{\left(2\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)}\)

\(=\left(-1+\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{x+\sqrt{x}+1}\right).\sqrt{x}=\left(\frac{-x-\sqrt{x}-1+x+\sqrt{x}}{x+\sqrt{x}+1}\right)\sqrt{x}=\frac{-\sqrt{x}}{x+\sqrt{x}+1}\)

26 tháng 5 2019

Hỏi đáp Toán

30 tháng 5 2019

=\(\frac{\sqrt{a}\left(\sqrt{a}-\sqrt{b}\right)-\sqrt{b}\left(\sqrt{a}-\sqrt{b}\right)}{a-b}\)-\(\frac{2b}{a-b}\)

=\(\frac{\sqrt{a}^2+\sqrt{ab}-\sqrt{ab}+\sqrt{b}^2}{a-b}\)-\(\frac{2b}{a-b}\)

=\(\frac{a+b}{a-b}\)-\(\frac{2b}{a-b}\)

=\(\frac{a+b-2b}{a-b}\)

=\(\frac{a-b}{a-b}\)

=1

mong là đúng đừng trách mình nếu sai nhé ^^

25 tháng 6 2018

a) \(2\sqrt{2x}-5\sqrt{8x}+7\sqrt{18x}=28\) (*)

đk: x >/ 0

(*) \(\Leftrightarrow2\sqrt{2x}-10\sqrt{2x}+21\sqrt{2x}=28\)

\(\Leftrightarrow13\sqrt{2x}=28\) \(\Leftrightarrow\sqrt{2x}=\dfrac{28}{13}\Leftrightarrow2x=\left(\dfrac{28}{13}\right)^2\Leftrightarrow x=\dfrac{392}{169}\left(N\right)\)

Kl: \(x=\dfrac{392}{169}\)

b) \(\sqrt{4x-20}+\sqrt{x-5}-\dfrac{1}{3}\sqrt{9x-45}=4\) (*)

đk: x >/ 5

(*) \(\Leftrightarrow2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4\)

\(\Leftrightarrow2\sqrt{x-5}=4\Leftrightarrow\sqrt{x-5}=2\Leftrightarrow x-5=4\Leftrightarrow x=9\left(N\right)\)

Kl: x=9

c) \(\sqrt{\dfrac{3x-2}{x+1}}=2\) (*)

Đk: \(\left[{}\begin{matrix}x< -1\\x\ge\dfrac{2}{3}\end{matrix}\right.\)

(*) \(\Leftrightarrow\dfrac{3x-2}{x+1}=4\Leftrightarrow3x-2=4x+4\Leftrightarrow x=-6\left(N\right)\)

Kl: x=-6

d) \(\dfrac{\sqrt{5x-4}}{\sqrt{x+2}}=2\) (*)

Đk: \(x\ge\dfrac{4}{5}\)

(*) \(\Leftrightarrow\sqrt{5x-4}=2\sqrt{x+2}\Leftrightarrow5x-4=4x+8\Leftrightarrow x=12\left(N\right)\)

Kl: x=12

AH
Akai Haruma
Giáo viên
30 tháng 9 2020

Lời giải:

\(x=\sqrt{4+\sqrt{8}}.\sqrt{(2+\sqrt{2+\sqrt{2}})(2-\sqrt{2+\sqrt{2}})}\)

\(=\sqrt{4+2\sqrt{2}}.\sqrt{2^2-(2+\sqrt{2})}=\sqrt{2(2+\sqrt{2})}.\sqrt{2-\sqrt{2}}\)

\(=\sqrt{2}.\sqrt{(2+\sqrt{2})(2-\sqrt{2})}=\sqrt{2}.\sqrt{2^2-2}=2\)

\(y=\frac{6\sqrt{2}-4\sqrt{3}+2\sqrt{5}}{9\sqrt{2}-6\sqrt{3}+3\sqrt{5}}=\frac{\frac{2}{3}(9\sqrt{2}-6\sqrt{3}+3\sqrt{5})}{9\sqrt{2}-6\sqrt{3}+3\sqrt{5}}=\frac{2}{3}\)

Do đó:

\(E=\frac{1+xy}{x+y}-\frac{1-xy}{x-y}=\frac{1+\frac{4}{3}}{2+\frac{2}{3}}-\frac{1-\frac{4}{3}}{2-\frac{2}{3}}=\frac{9}{8}\)

30 tháng 9 2020

Lười chép đề quá, thông cảm ._.

P = \(1-\frac{1}{\sqrt{5}}+\frac{1}{\sqrt{5}}-\frac{1}{\sqrt{9}}+...+\frac{1}{\sqrt{2001}}-\frac{1}{\sqrt{2005}}\)

P = \(1-\frac{1}{\sqrt{2005}}\)

P = \(\frac{1}{1+\sqrt{2005}}\)

Chúc bạn học tốt!

10 tháng 11 2017

Viết sai 1 số ;v, and I think là Max =))

\(A=\dfrac{bc\sqrt{a-1}+ac\sqrt{b-4}+ab\sqrt{c-9}}{abc}\)

\(=\dfrac{bc\sqrt{1\left(a-1\right)}+\dfrac{ac\sqrt{4\left(b-4\right)}}{2}+\dfrac{ab\sqrt{9\left(c-9\right)}}{3}}{abc}\)

\(\le\dfrac{\dfrac{abc}{2}+\dfrac{abc}{4}+\dfrac{abc}{6}}{abc}=\dfrac{1}{2}+\dfrac{1}{1}+\dfrac{1}{6}=\dfrac{11}{12}\)

Vậy GTLN là.....

11 tháng 11 2017

Cảm ơn bạn,đúng rồi đấy

14 tháng 8 2017

giúp mik đi ạ , mik đang gấp ạ, c.ơn m,n