\(\sqrt{a^2-a+1}+\sqrt{a-a^2+1}\) chứng minh bé hơn hoặc bằng 2

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 6 2017

Nếu \(a\le0\) thì chỉ có số 0 là thỏa mãn (vì nếu \(a< 0\) thì \(\sqrt{a}\) vô nghĩa)

Vậy \(a=0\)

1)

\(9a-6\sqrt{a}+5>0\\ \Leftrightarrow9\cdot0-6\sqrt{0}+5>0\\ \Leftrightarrow9\cdot0-6\cdot0+5>0\\ \Leftrightarrow0-0+5>0\\ \Leftrightarrow5>0\)

Bất đẳng thức cuối cùng đúng, vậy bất đẳng thức đầu tiên đúng

Vậy \(9a-6\sqrt{a}+5>0\left(đpcm\right)\)

Câu 2,3 tương tự

26 tháng 11 2019

@Võ Hồng Phúc

7 tháng 6 2016
Bạn ơi, đây là cách giải của mình, có gì sai sót bạn bỏ qua nhé ^^. Ta có A bình+ B bình +C bình lớn hơn hoạc = ab+ac+bc <=> A+B+C tất cả bình lớn hơn hoặc bằng 3(ab+bc+ac) tức là lớn hơn hoặc bằng 3 <=> a+b+c+3 nhỏ hơn hoặc bằng 2(a+b+c). Mà A bình +1 nhỏ hơn hoặc bằng (a+1) tất cả bình nên căn A bình +1 nhỏ hơn hoặc = A+1. Tương tự như thế thì có thể giải dc bài toán
NV
15 tháng 10 2019

\(P=\left(\frac{\left(\sqrt{x}-\sqrt{y}\right)\left(1-\sqrt{xy}\right)+\left(\sqrt{x}+\sqrt{y}\right)\left(1+\sqrt{xy}\right)}{1-xy}\right):\left(\frac{x+y+2xy+1-xy}{1-xy}\right)\)

\(=\left(\frac{2\sqrt{x}+2y\sqrt{x}}{1-xy}\right):\left(\frac{\left(x+1\right)\left(y+1\right)}{1-xy}\right)\)

\(=\frac{2\sqrt{x}\left(y+1\right)}{\left(1-xy\right)}.\frac{\left(1-xy\right)}{\left(x+1\right)\left(y+1\right)}=\frac{2\sqrt{x}}{x+1}\)

\(x=\frac{2}{2+\sqrt{3}}=\frac{2\left(2-\sqrt{3}\right)}{4-3}=4-2\sqrt{3}=\left(\sqrt{3}-1\right)^2\Rightarrow\sqrt{x}=\sqrt{3}-1\)

\(\Rightarrow P=\frac{2\left(\sqrt{3}-1\right)}{5-2\sqrt{3}}=\frac{2+6\sqrt{3}}{13}\)

Ta có \(1-P=1-\frac{2\sqrt{x}}{x+1}=\frac{x-2\sqrt{x}+1}{x+1}=\frac{\left(\sqrt{x}-1\right)^2}{x+1}\ge0\) \(\forall x\ge0\)

\(\Rightarrow1-P\ge0\Rightarrow P\le1\)

Câu 1: 

a: \(P=\dfrac{a-4-5-\sqrt{a}-3}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-2\right)}\)

\(=\dfrac{a-\sqrt{a}-12}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-2\right)}=\dfrac{\sqrt{a}-4}{\sqrt{a}-2}\)

b: Để P<1 thì \(\dfrac{\sqrt{a}-4-\sqrt{a}+2}{\sqrt{a}-2}< 0\)

\(\Leftrightarrow\sqrt{a}-2< 0\)

hay 0<a<4