Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{14+\sqrt{16900}}-\sqrt{19+\sqrt{900}}+\sqrt{45+\sqrt{3025}}\)
\(=\sqrt{14+\sqrt{130^2}}-\sqrt{19+\sqrt{30^2}}+\sqrt{45+\sqrt{55^2}}\)
\(=\sqrt{14+130}-\sqrt{19+30}+\sqrt{45+55}\)
\(=\sqrt{144}-\sqrt{49}+\sqrt{100}\)
\(=\sqrt{12^2}-\sqrt{7^2}+\sqrt{10^2}\)
\(=12-7+10\)
\(=5+10\)
\(=15\)
Tính:
\(\sqrt{8100}\) \(\sqrt{900}\) \(\sqrt{3136}\)
\(\sqrt{3364}\) \(\sqrt{3969}\) \(\sqrt{722500}\)
\(\sqrt{8100=90}\) \(\sqrt{3136=56}\)
\(\sqrt{3364=58}\) \(\sqrt{722500=850}\)
\(\sqrt{900=30}\)
\(\sqrt{3969=63}\)
a) Có: \(\sqrt{9\cdot4}=\sqrt{36}=6\)
\(\sqrt{9}\cdot\sqrt{4}=3\cdot2=6\)
=> \(\sqrt{9\cdot4}=\sqrt{9}\cdot\sqrt{4}\)
b) \(\sqrt{16\cdot25}=\sqrt{400}=20\)
\(\sqrt{16}\cdot\sqrt{25}=4\cdot5=20\)
=> \(\sqrt{16\cdot25}=\sqrt{16}\cdot\sqrt{25}\)
c,d tương tự
ai đó giúp mk cái @Trần Việt Linh VS @Mai Phương aNH ơi
mn ơi, giúp vs
a) Vì 52 = 25 nên √25 = 5
b) Vì 72= 49 nên √49 = 7
c) Vì 12 = 1 nên √1 = 1
d) Vì (23)2=49(23)2=49 = nên √49=23
a) Vì 52=25 nên \(\sqrt{25}=5\).
b) Vì 72=49 nên \(\sqrt{49}=7\).
c) Vì 1n=1 nên \(\sqrt{1}=1\). (\(\forall n\in N\))
d) Vì \(\left(\dfrac{2}{3}\right)^2=\dfrac{4}{9}\) nên \(\sqrt{\dfrac{4}{9}}=\dfrac{\sqrt{4}}{\sqrt{9}}=\dfrac{2}{3}\).
d: \(D=-8\cdot\left(\dfrac{3}{4}-\dfrac{1}{4}\right):\left(\dfrac{9}{4}-\dfrac{7}{6}\right)\)
\(=-8\cdot\dfrac{1}{2}:\dfrac{27-14}{12}\)
\(=-4:\dfrac{13}{12}\)
\(=-4\cdot\dfrac{12}{13}=-\dfrac{48}{13}\)
e: \(E=5\cdot4-4\cdot3+5-0.3\cdot20\)
=20-12+5-6
=8+5-6
=13-6=7
f: \(F=\dfrac{9}{4}+\dfrac{5}{6}-\dfrac{3}{2}:6\)
\(=\dfrac{9}{4}+\dfrac{5}{6}-\dfrac{3}{12}\)
\(=\dfrac{27}{12}+\dfrac{10}{12}-\dfrac{3}{12}=\dfrac{34}{12}=\dfrac{17}{6}\)
\(\frac{3}{4}+\frac{1}{4}:\left(-\frac{2}{3}\right)-\left(-5\right)\)
\(=\frac{3}{4}+\frac{1}{4}.\left(-\frac{3}{2}\right)+5\)
\(=\frac{3}{4}-\frac{3}{8}+5\)
\(=\frac{3}{8}+5=\frac{43}{8}\)
\(12.\left(\frac{2}{5}-\frac{5}{6}\right)^2=12.\left(-\frac{13}{30}\right)^2=12.\frac{169}{900}=\frac{169}{75}\)
\(\left(-2\right)^2+\sqrt{36}-\sqrt{9}+\sqrt{25}=4+6-3+5=12\)
\(\left(9\frac{3}{4}:3.4.2\frac{7}{34}\right):\left(-1\frac{9}{16}\right)=\left(\frac{39}{4}:3.4.\frac{75}{34}\right):\left(-\frac{25}{16}\right)=\frac{975}{34}.\left(-\frac{16}{25}\right)=-\frac{312}{17}\)
\(\frac{\sqrt{3^2}+\sqrt{39^2}}{\sqrt{91^2}-\sqrt{\left(-7\right)^2}}=\frac{3+39}{91-7}=\frac{42}{84}=\frac{1}{2}\)
\(\sqrt{300+900.x}=2007\Rightarrow300+900.x=4028049\)
\(\Rightarrow900.x=4027749\Rightarrow x=4475,276667\)
Mk thật sự k chắc đâu đó! chúc bn hok tot~!
\(\sqrt{300+900.x}=2007\Rightarrow300+900.x=4028049\)
\(\Rightarrow900.x=4027749\Rightarrow x=4475,276667\)
Bài 1:
a, \(9^{x-1}=\dfrac{1}{9}\)
\(\Rightarrow9^{x-1}=9^{-1}\)
Vì \(9\ne-1;9\ne0;9\ne1\) nên
\(x-1=-1\Rightarrow x=0\)
Vậy \(x=0\)
b, \(\dfrac{1}{3}:\sqrt{7-3x^2}=\dfrac{2}{15}\)
\(\Rightarrow\sqrt{7-3x^2}=\dfrac{1}{3}:\dfrac{2}{15}\)
\(\Rightarrow\sqrt{7-3x^2}=\dfrac{5}{2}\)
\(\Rightarrow\left(\sqrt{7-3x^2}\right)^2=\left(\dfrac{5}{2}\right)^2\)
\(\Rightarrow7-3x^2=\dfrac{25}{4}\)
\(\Rightarrow3x^2=\dfrac{3}{4}\Rightarrow x^2=\dfrac{1}{4}\)
\(\Rightarrow x=\pm\dfrac{1}{2}\)
Vậy \(x=\pm\dfrac{1}{2}\)
Chúc bạn học tốt!!!
Bài 2:
Với mọi giá trị của \(x;y;z\in R\) ta có:
\(\sqrt{\left(x-\sqrt{2}\right)^2}\ge0;\sqrt{\left(y+\sqrt{2}\right)^2\ge}0;\left|x+y+z\right|\ge0\)
\(\Rightarrow\sqrt{\left(x-\sqrt{2}\right)^2}+\sqrt{\left(y+\sqrt{2}\right)^2}+\left|x+y+z\right|\ge0\) với mọi giá trị của \(x;y;z\in R\).
Để \(\sqrt{\left(x-\sqrt{2}\right)^2}+\sqrt{\left(y+\sqrt{2}\right)^2}+\left|x+y+z\right|=0\) thì
\(\left\{{}\begin{matrix}\sqrt{\left(x-\sqrt{2}\right)^2}=0\\\sqrt{\left(y+\sqrt{2}\right)^2}=0\\\left|x+y+z\right|=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x-\sqrt{2}=0\\y+\sqrt{2}=0\\x+y+z=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=\sqrt{2}\\y=-\sqrt{2}\\\sqrt{2}-\sqrt{2}+z=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\sqrt{2}\\y=-\sqrt{2}\\z=0\end{matrix}\right.\)
Vậy \(x=\sqrt{2};y=-\sqrt{2};z=0\)
Chúc bạn học tốt!!!
\(\sqrt{900}:\sqrt{800}=30:20\sqrt{2}=\frac{3\sqrt{2}}{2}\)