Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mình làm mẫu 2 bài nhé 2 bài kia bạn làm tương tự
1)a)\(\sqrt{4-2\sqrt{3}}-\sqrt{3}=\sqrt{\left(\sqrt{3}+1\right)^2}-\sqrt{3}=\sqrt{3}+1-\sqrt{3}=1\)
\(\sqrt{10-2\sqrt{21}}+\sqrt{7}=\sqrt{\left(\sqrt{7}+\sqrt{3}\right)^2}+\sqrt{7}=\sqrt{7}+\sqrt{3}+\sqrt{7}=2\sqrt{7}+\sqrt{3}\)
2)a) \(\sqrt{12-6\sqrt{3}}-\sqrt{3}=\sqrt{\left(3-\sqrt{3}\right)^2}-\sqrt{3}=3-\sqrt{3}-\sqrt{3}=3-2\sqrt{3}\)
b) \(\sqrt{7+2\sqrt{6}}-\sqrt{3}=\sqrt{\left(1+\sqrt{6}\right)^2}-\sqrt{3}=1+\sqrt{6}-\sqrt{3}\)
a)(\(\sqrt{2006}-\sqrt{2005}\)).(\(\sqrt{2006}+\sqrt{2005}\))
=\(\sqrt{2006}^2-\sqrt{2005}^2\)
=2006-2005
=1
\(\sqrt{3-2\sqrt{2}}=\sqrt{2-2\sqrt{2}+1}=\sqrt{\left(\sqrt{2}\right)^2-2\sqrt{2}+1^2}=\sqrt{\left(\sqrt{2}-1\right)^2}=\sqrt{2}-1\left(vì:\sqrt{2}>\sqrt{1}=1\right)\)
\(\sqrt{7+4\sqrt{3}}=\sqrt{4+4\sqrt{3}+3}=\sqrt{\left(2\right)^2+2.2\sqrt{3}+\left(\sqrt{3}\right)^2}=\sqrt{\left(2+\sqrt{3}\right)^2}=2+\sqrt{3}\left(2+\sqrt{3}>0\right)\)
\(\sqrt{28-10\sqrt{3}}=\sqrt{25-10\sqrt{3}+3}=\sqrt{5^2-2.5\sqrt{3}+\left(\sqrt{3}\right)^2}=\sqrt{\left(5-\sqrt{3}\right)^2}=5-\sqrt{3}\left(vì:5=\sqrt{25}>\sqrt{3}\right)\)
Bạn giải thích cho mik chỗ \(\sqrt{\left(\sqrt{2}-1\right)^2}\)tại sao lại bằng Căn bậc 2 của 2 -1
a, \(\left(\sqrt{2006}-\sqrt{2005}\right).\left(\sqrt{2006}+\sqrt{2005}\right)=\left(2006-2005\right)=1\)
b.
=\(\frac{7+4\sqrt{3}+14-8\sqrt{3}}{49-48}\left(21+4\sqrt{3}\right)\)
=\(\left(21-4\sqrt{3}\right)\left(21+4\sqrt{3}\right)\)
=441-48
393
vậy.......
hc tốt
a, \(=\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)-\sqrt{2}\left(\sqrt{3}-1\right)\)
\(=3-1-\sqrt{6}+\sqrt{2}=2+\sqrt{2}-\sqrt{6}\)
b, \(=\sqrt{300.0,04}+2\left|\sqrt{3}-\sqrt{5}\right|\)
\(=2\sqrt{3}+2\left(\sqrt{5}-\sqrt{3}\right)\)
\(=2\sqrt{3}+2\sqrt{5}-2\sqrt{3}=2\sqrt{5}\)
c, \(=\sqrt{196}-2\sqrt{98}+\sqrt{49}+7\sqrt{8}\)
\(=14-14\sqrt{2}+7+14\sqrt{2}=21\)
d, \(=15\sqrt{5}+5\sqrt{20}-3\sqrt{45}\)
\(=15\sqrt{5}+10\sqrt{5}-9\sqrt{5}=16\sqrt{5}\)
Bài 1: Rút gọn
a) Ta có: \(\left(\sqrt{3}-\sqrt{2}+1\right)\cdot\left(\sqrt{3}-1\right)\)
\(=\left(\sqrt{3}+1\right)\cdot\left(\sqrt{3}-1\right)-\sqrt{2}\cdot\left(\sqrt{3}-1\right)\)
\(=3-1-\sqrt{6}+\sqrt{2}\)
\(=2-\sqrt{2}-\sqrt{6}\)
b) Ta có: \(0.2\cdot\sqrt{\left(-10\right)^2\cdot3}+2\cdot\sqrt{\left(\sqrt{3}-\sqrt{5}\right)^2}\)
\(=0.2\cdot\sqrt{\left(-10\right)^2}\cdot\sqrt{3}+2\cdot\left(\sqrt{5}-\sqrt{3}\right)\)
\(=0.2\cdot10\cdot\sqrt{3}+2\sqrt{5}-2\sqrt{3}\)
\(=2\sqrt{3}+2\sqrt{5}-2\sqrt{3}\)
\(=2\sqrt{5}\)
c) Ta có: \(\left(\sqrt{28}-2\sqrt{14}+\sqrt{7}\right)\cdot\sqrt{7}+7\sqrt{8}\)
\(=\sqrt{196}-2\cdot\sqrt{98}+\sqrt{49}+7\sqrt{8}\)
\(=14-\sqrt{392}+7+\sqrt{392}\)
=21
d) Ta có: \(\left(15\sqrt{50}+5\sqrt{200}-3\sqrt{450}\right):\sqrt{10}\)
\(=15\sqrt{5}+5\sqrt{20}-3\sqrt{45}\)
\(=\sqrt{5}\left(15+5\cdot2-3\cdot3\right)\)
\(=16\sqrt{5}\)