\(\sqrt{4x+6}+\sqrt[3]{x^3+7x^2+12x+6}\ge x^2-2\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 12 2019

1/\(4x^4+12x^3-47x^2+12x+4=0\)

\(\Leftrightarrow\left(x-2\right)\left(4x^3+20x^2-7x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(2x-1\right)\left(2x^2+11x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\frac{1}{2}\\x=\frac{-11\pm\sqrt{105}}{4}\end{matrix}\right.\)

Vậy ....

1 tháng 12 2019

1, 4x^4+12x^3+12x−47x^2+4=0 nhé

NV
22 tháng 10 2019

a/ \(\Leftrightarrow x^2+5x-2-2\sqrt[3]{x^2+5x-2}+4=0\)

Đặt \(\sqrt[3]{x^2+5x-2}=a\)

\(a^3-2a+4=0\)

\(\Leftrightarrow\left(a+2\right)\left(a^2-2a+2\right)=0\Rightarrow a=-2\)

\(\Rightarrow\sqrt[3]{x^2+5x-2}=-2\Rightarrow x^2+5x+6=0\Rightarrow...\)

b/ ĐKXĐ:...

\(\Leftrightarrow-3\left(-x^2+4x+10\right)-5\sqrt{-x^2+4x+10}+42=0\)

Đặt \(\sqrt{-x^2+4x+10}=a\ge0\)

\(-3a^2-5a+42=0\Rightarrow\left[{}\begin{matrix}a=3\\a=-\frac{14}{3}\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{x^2+4x+10}=3\Rightarrow x^2-4x-1=0\Rightarrow...\)

NV
22 tháng 10 2019

c/ ĐKXĐ: ...

\(\Leftrightarrow x^2+3x+3\sqrt{x^2+3x}-10=0\)

Đặt \(\sqrt{x^2+3x}=a\ge0\)

\(a^2+3a-10=0\Rightarrow\left[{}\begin{matrix}a=2\\a=-5\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{x^2+3x}=2\Rightarrow x^2+3x-4=0\)

d/ ĐKXĐ: \(-1\le x\le2\)

\(\Leftrightarrow\sqrt{3-x+x^2}=1+\sqrt{2+x-x^2}\)

\(\Leftrightarrow3-x+x^2=3+x-x^2+2\sqrt{2+x-x^2}\)

\(\Leftrightarrow2+x-x^2+\sqrt{2+x-x^2}-2=0\)

Đặt \(\sqrt{2+x-x^2}=a\ge0\)

\(a^2+a-2=0\Rightarrow\left[{}\begin{matrix}a=1\\a=-2\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{2+x-x^2}=1\Leftrightarrow x^2-x-1=0\)

e/ \(\Leftrightarrow\sqrt{x^2-3x+3}-1+\sqrt{x^2-3x+6}-2=0\)

\(\Leftrightarrow\frac{x^2-3x+2}{\sqrt{x^2-3x+3}+1}+\frac{x^2-3x+2}{\sqrt{x^2-3x+6}+2}=0\)

\(\Leftrightarrow\left(x^2-3x+2\right)\left(\frac{1}{\sqrt{x^2-3x+3}+1}+\frac{1}{\sqrt{x^2-3x+6}+2}\right)=0\)

\(\Leftrightarrow x^2-3x+2=0\)