Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ\(\orbr{\begin{cases}x\le\frac{1}{2}\\x\ge1\end{cases}}\)
Đặt \(\sqrt{2x^2-3x+1}=a\left(a\ge0\right)\)
\(\Rightarrow4a^2+4x-1=8x^2-8x+3\)
Thay vào đề bài được
\(4a^2+4x-1=8ax\)
\(\Leftrightarrow4a^2-8ax+4x-1=0\)
CÓ \(\Delta'=16x^2-16x+4=\left(4x-2\right)^2\)
\(\Rightarrow\orbr{\begin{cases}a=\frac{4x-4x+2}{4}=\frac{1}{2}\\a=\frac{4x+4x-2}{4}=\frac{4x-1}{2}\end{cases}}\)
Làm nốt
ĐKXĐ\(\orbr{\begin{cases}x\le\frac{1}{2}\\x\ge1\end{cases}}\)
Đặt \sqrt{2x^2-3x+1}=a\left(a\ge0\right)2x2−3x+1=a(a≥0)
\Rightarrow4a^2+4x-1=8x^2-8x+3⇒4a2+4x−1=8x2−8x+3
Thay vào đề bài được
4a^2+4x-1=8ax4a2+4x−1=8ax
\Leftrightarrow4a^2-8ax+4x-1=0⇔4a2−8ax+4x−1=0
CÓ \Delta'=16x^2-16x+4=\left(4x-2\right)^2Δ′=16x2−16x+4=(4x−2)2
\(\Rightarrow\orbr{\begin{cases}a=\frac{4x-4x+2}{4}=\frac{1}{2}\\a=\frac{4x+4x-2}{4}=\frac{4x-1}{2}\end{cases}}\)
\(3\sqrt{8x^2+3}-8x=6\sqrt{2x^2-2x+1}-1\)
\(\Leftrightarrow3\left(\sqrt{8x^2+3}-2\sqrt{2x^2-2x+1}\right)-8x+1=0\)
\(\Leftrightarrow\frac{3\left(8x-1\right)}{\sqrt{8x^2+1}+2\sqrt{2x^2-2x+1}}-\left(8x-1\right)=0\)
\(\Leftrightarrow\left(8x-1\right)\left[\frac{3}{\sqrt{8x^2+3}+2\sqrt{2x^2-2x+1}}-1\right]=0\)
<=> 8x-1=0
<=> x=\(\frac{1}{8}\)
\(pt\Leftrightarrow3\sqrt{8x^2+3}-3\sqrt{8x^2-8x+4}=8x-1\)
\(\Leftrightarrow3\cdot\frac{8x-1}{\sqrt{8x^2+3}+\sqrt{8x^2-8x+4}}-\left(8x-1\right)=0\)
\(\Leftrightarrow\left(8x-1\right)\left(\frac{3}{\sqrt{8x^2+3}+\sqrt{8x^2-8x+4}}-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{8}\\\sqrt{8x^2+3}+\sqrt{8x^2-8x+4}=3\end{matrix}\right.\)
\(pt2\Leftrightarrow-8x-8+2\sqrt{8x^2+3}=0\)
\(\Leftrightarrow16x^2+16+32x=8x^2+3\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{-8+\sqrt{38}}{4}\\x=\frac{-8-\sqrt{38}}{4}\end{matrix}\right.\)(loại vì ko tm đk)
\(4x^2-8x+3\)
\(=4x^2-6x-2x+3\)
\(=2x\left(2x-3\right)-\left(2x-3\right)\)
\(=\left(2x-1\right)\left(2x-3\right)\)
\(4x^2-8x+3\)
\(=4x^2-6x-2x+3\)
=\(2x\left(2x-3\right)-\left(2x-3\right)\)
\(=\left(2x-1\right)\left(2x-3\right)\)