Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

k) ĐK: $x^2\geq 5$
PT $\Leftrightarrow 2\sqrt{x^2-5}-\frac{1}{3}\sqrt{x^2-5}+\frac{3}{4}\sqrt{x^2-5}-\frac{5}{12}\sqrt{x^2-5}=4$
$\Leftrightarrow 2\sqrt{x^2-5}=4$
$\Leftrightarrow \sqrt{x^2-5}=2$
$\Rightarrow x^2-5=4$
$\Leftrightarrow x^2=9\Rightarrow x=\pm 3$ (đều thỏa mãn)
l) ĐKXĐ: $x\geq -1$
PT $\Leftrightarrow 2\sqrt{x+1}+3\sqrt{x+1}-\sqrt{x+1}=4$
$\Leftrightarrow 4\sqrt{x+1}=4$
$\Leftrightarrow \sqrt{x+1}=1$
$\Rightarrow x+1=1$
$\Rightarrow x=0$
m)
ĐKXĐ: $x\geq -1$
PT $\Leftrightarrow 4\sqrt{x+1}+2\sqrt{x+1}=16-\sqrt{x+1}+3\sqrt{x+1}$
$\Leftrightarrow 6\sqrt{x+1}=16+2\sqrt{x+1}$
$\Leftrightarrow 4\sqrt{x+1}=16$
$\Leftrightarrow \sqrt{x+1}=4$
$\Rightarrow x=15$ (thỏa mãn)
h)
ĐKXĐ: $x\geq -5$
PT $\Leftrightarrow \sqrt{x+5}=6$
$\Rightarrow x+5=36\Rightarrow x=31$ (thỏa mãn)
i) ĐKXĐ: $x\geq 5$
PT \(\Leftrightarrow \sqrt{x-5}+4\sqrt{x-5}-\sqrt{x-5}=12\)
\(\Leftrightarrow 4\sqrt{x-5}=12\Leftrightarrow \sqrt{x-5}=3\Rightarrow x-5=9\Rightarrow x=14\) (thỏa mãn)
j)
ĐKXĐ: $x\geq 0$
PT $\Leftrightarrow 3\sqrt{2x}+\sqrt{2x}-6\sqrt{2x}+4=0$
$\Leftrightarrow -2\sqrt{2x}+4=0$
$\Leftrightarrow \sqrt{2x}=2$
$\Rightarrow x=2$ (thỏa mãn)

a: \(\Leftrightarrow2\sqrt{x+5}-3\sqrt{x+5}+\dfrac{4}{3}\cdot3\sqrt{x+5}=6\)
\(\Leftrightarrow3\sqrt{x+5}=6\)
=>x+5=4
hay x=-1
b: \(\Leftrightarrow5\sqrt{x-1}-\dfrac{15}{2}\cdot\dfrac{\sqrt{x-1}}{3}-\sqrt{x-1}=6\)
\(\Leftrightarrow\sqrt{x-1}\cdot\dfrac{3}{2}=6\)
\(\Leftrightarrow\sqrt{x-1}=4\)
=>x-1=16
hay x=17

\(dat:\sqrt{x-5}=a\Rightarrow\sqrt{4\left(x-5\right)}+\sqrt{x-5}-\frac{1}{3}=\sqrt{9\left(x-5\right)}\Rightarrow\sqrt{4}.a+a-\frac{1}{3}=\sqrt{9}.a\Rightarrow3a-\frac{1}{3}=3a\left(voli\right)\Rightarrow vonghiem\)
câu a chắc đề như zầy pk bạn???
\(\sqrt{4x-20}+\sqrt{x-5}-\frac{1}{3}+\sqrt{9x-45}=4\)
\(pt\Leftrightarrow2\sqrt{x-5}+\sqrt{x-5}+3\sqrt{x-5}=\frac{13}{3}\)
\(\Leftrightarrow6\sqrt{x-5}=\frac{13}{3}\Rightarrow\sqrt{x-5}=\frac{13}{18}\Leftrightarrow x=\frac{1789}{324}\)
b)đề như này đúng ko bạn??
\(\sqrt{16-32x}-\sqrt{12x}=\sqrt{3x}+\sqrt{9-18x}\)
\(\Leftrightarrow4\sqrt{1-2x}-2\sqrt{3x}=\sqrt{3x}+3\sqrt{1-2x}\)
\(\Leftrightarrow\sqrt{1-2x}-3\sqrt{3x}=0\Leftrightarrow\sqrt{1-2x}=3\sqrt{3x}\)
\(\Leftrightarrow1-2x=27x\Leftrightarrow x=\frac{1}{29}\)
câu c\(\sqrt{4x-20}-3\sqrt{\frac{x-5}{9}}=\sqrt{1-x}\)
Xét điều kiện \(\left\{{}\begin{matrix}x\le1\\x\ge5\end{matrix}\right.\)không tồn tại số nào nằm trong khoảng này
Vậy pt trên vô nghiệm

a) \(\sqrt{1-4x+4x^2}=5\)
<=> \(\sqrt{4x^2-4x+1}=5\)
<=> 4x2 - 4x + 1 = 52
<=> 4x2 - 4x + 1 = 25
<=> 4x2 - 4x + 1 - 25 = 0
<=> 4x2 - 4x - 24 = 0
<=> 4(x + 2)(x - 3) = 0
<=> x = -2 hoặc x = 3
=> x = -2 hoặc x = 3
b) \(\sqrt{4-5x}=12\)
<=> \(\sqrt{-5x+4}=12\)
<=> -5x + 4 = 122
<=> -5x + 4 = 144
<=> -5x = 144 - 4
<=> -5x = 140
<=> x = -28
=> x = -28
\(a,\sqrt{1-4x+4x^2}=5\)
\(\Rightarrow4x^2-4x+1=25\)
\(\Rightarrow4x^2-4x-24=0\)
\(\Rightarrow x^2-x-6=0\)
\(\Rightarrow x^2-3x+2x-6=0\)
\(\Rightarrow x\left(x-3\right)+2\left(x-3\right)=0\)
\(\Rightarrow\left(x-3\right)\left(x+2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-3=0\\x+2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=3\\x=-2\end{cases}}}\)
\(b,\sqrt{4-5x}=12\)
\(\Rightarrow4-5x=144\)
\(\Rightarrow5x=-140\)
\(\Rightarrow x=-28\)

a) \(\sqrt{4-5x}=12\)
ĐK : x ≤ 4/5
Bình phương hai vế
⇔ \(4-5x=144\)
⇔ \(-5x=140\)
⇔ \(x=-28\)( tm )
b) \(\sqrt{1-4x+4x^2}=5\)
⇔ \(\sqrt{\left(1-2x\right)^2}=5\)
⇔ \(\left|1-2x\right|=5\)
⇔ \(\orbr{\begin{cases}1-2x=5\\1-2x=-5\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-2\\x=3\end{cases}}\)
c) \(\sqrt{4x+20}-3\sqrt{5+x}+\frac{3}{4}\sqrt{9x+45}=6\)
ĐK : x ≥ -5
⇔ \(\sqrt{2^2\left(x+5\right)}-3\sqrt{x+5}+\frac{3}{4}\sqrt{3^2\left(x+5\right)}=6\)
⇔ \(\left|2\right|\sqrt{x+5}-3\sqrt{x+5}+\frac{3}{4}\cdot\left|3\right|\sqrt{x+5}=6\)
⇔ \(2\sqrt{x+5}-3\sqrt{x+5}+\frac{9}{4}\sqrt{x+5}=6\)
⇔ \(\frac{5}{4}\sqrt{x+5}=6\)
⇔ \(\sqrt{x+5}=\frac{24}{5}\)
⇔ \(x+5=\frac{576}{25}\)
⇔ \(x=\frac{451}{25}\)( tm )
d)\(\sqrt{x-2}\le3\)
ĐK : x ≥ 2
⇔ \(x-2\le9\)
⇔ \(x\le11\)
Kết hợp với điều kiện => Nghiệm của bpt là 2 ≤ x ≤ 11

Bạn tự tìm ĐKXĐ.
a/ \(\sqrt{4-5x}=12\Rightarrow4-5x=144\Rightarrow x=-28\)
b/ \(10+\sqrt{3x}=\left(2+\sqrt{6}\right)^2=10+4\sqrt{6}\)
\(\Rightarrow\sqrt{3x}=4\sqrt{6}\Rightarrow\sqrt{x}=4\sqrt{2}\)
\(\Rightarrow x=32\)
c/ \(2\sqrt{x+5}-3\sqrt{x+5}+4\sqrt{x+5}=6\)
\(\Leftrightarrow3\sqrt{x+5}=6\)
\(\Rightarrow\sqrt{x+5}=2\Rightarrow x+5=4\Rightarrow x=-1\)
d/ \(\sqrt{\left(x-3\right)\left(x+3\right)}-3\sqrt{x-3}=0\)
\(\Rightarrow\sqrt{x-3}\left(\sqrt{x+3}-3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}\sqrt{x-3}=0\\\sqrt{x+3}=3\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=3\\x=6\end{matrix}\right.\)
e/ \(\sqrt{\frac{4x+3}{x+1}}=3\Leftrightarrow\frac{4x+3}{x+1}=9\)
\(\Rightarrow4x+3=9x+9\Rightarrow5x=-6\Rightarrow x=-\frac{6}{5}\)
f/ \(\sqrt{x-2}\le3\Rightarrow x-2\le9\Rightarrow2\le x\le11\)

a/\(\sqrt{x^2-2x}=\sqrt{2-3x}\left(đk:x\le0\right)
\)
\(\Leftrightarrow x^2-2x=2-3x\)
\(\Leftrightarrow x^2+x-2=0\Leftrightarrow\left(x-1\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\left(KTM\right)\\x=-2\left(TM\right)\end{matrix}\right.\)
Vậy x=-2 là nghiệm của PT
b/\(\sqrt{x-3}-2\sqrt{x^2-9}=0\left(đk:x\ge3\right)\)
\(\Leftrightarrow\sqrt{x-3}\left(1-2\sqrt{x+3}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-3}=0\\1=2\sqrt{x+3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\left(TM\right)\\4x+12=1\end{matrix}\right.\Leftrightarrow}\left[{}\begin{matrix}x=3\\x=-\frac{11}{4}\left(KTM\right)\end{matrix}\right.\)
Vậy x=3
\(Dk:x\ge5\)
\(\sqrt{4x-20}+\sqrt{x-5}-\frac{1}{3}\sqrt{9x-45}=\sqrt{4\left(x-5\right)}+\sqrt{x-5}-\frac{1}{3}\sqrt{9\left(x-5\right)}=2\sqrt{x-5}+\sqrt{x-5}-\frac{1}{3}.3\sqrt{x-5}=2\sqrt{x-5}=4\Rightarrow\sqrt{x-5}=2\Leftrightarrow x-5=4\Leftrightarrow x=9\left(tmdk\right)\)