\(\sqrt{4x-20}\)+\(\sqrt{x-5}\)-\(\frac{...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 8 2019

\(Dk:x\ge5\)

\(\sqrt{4x-20}+\sqrt{x-5}-\frac{1}{3}\sqrt{9x-45}=\sqrt{4\left(x-5\right)}+\sqrt{x-5}-\frac{1}{3}\sqrt{9\left(x-5\right)}=2\sqrt{x-5}+\sqrt{x-5}-\frac{1}{3}.3\sqrt{x-5}=2\sqrt{x-5}=4\Rightarrow\sqrt{x-5}=2\Leftrightarrow x-5=4\Leftrightarrow x=9\left(tmdk\right)\)

AH
Akai Haruma
Giáo viên
16 tháng 7 2020

k) ĐK: $x^2\geq 5$

PT $\Leftrightarrow 2\sqrt{x^2-5}-\frac{1}{3}\sqrt{x^2-5}+\frac{3}{4}\sqrt{x^2-5}-\frac{5}{12}\sqrt{x^2-5}=4$

$\Leftrightarrow 2\sqrt{x^2-5}=4$

$\Leftrightarrow \sqrt{x^2-5}=2$

$\Rightarrow x^2-5=4$

$\Leftrightarrow x^2=9\Rightarrow x=\pm 3$ (đều thỏa mãn)

l) ĐKXĐ: $x\geq -1$

PT $\Leftrightarrow 2\sqrt{x+1}+3\sqrt{x+1}-\sqrt{x+1}=4$

$\Leftrightarrow 4\sqrt{x+1}=4$

$\Leftrightarrow \sqrt{x+1}=1$

$\Rightarrow x+1=1$

$\Rightarrow x=0$

m) 

ĐKXĐ: $x\geq -1$

PT $\Leftrightarrow 4\sqrt{x+1}+2\sqrt{x+1}=16-\sqrt{x+1}+3\sqrt{x+1}$

$\Leftrightarrow 6\sqrt{x+1}=16+2\sqrt{x+1}$

$\Leftrightarrow 4\sqrt{x+1}=16$

$\Leftrightarrow \sqrt{x+1}=4$

$\Rightarrow x=15$ (thỏa mãn)

AH
Akai Haruma
Giáo viên
16 tháng 7 2020

h) 

ĐKXĐ: $x\geq -5$

PT $\Leftrightarrow \sqrt{x+5}=6$

$\Rightarrow x+5=36\Rightarrow x=31$ (thỏa mãn)

i) ĐKXĐ: $x\geq 5$

PT \(\Leftrightarrow \sqrt{x-5}+4\sqrt{x-5}-\sqrt{x-5}=12\)

\(\Leftrightarrow 4\sqrt{x-5}=12\Leftrightarrow \sqrt{x-5}=3\Rightarrow x-5=9\Rightarrow x=14\) (thỏa mãn)

j) 

ĐKXĐ: $x\geq 0$

PT $\Leftrightarrow 3\sqrt{2x}+\sqrt{2x}-6\sqrt{2x}+4=0$

$\Leftrightarrow -2\sqrt{2x}+4=0$

$\Leftrightarrow \sqrt{2x}=2$

$\Rightarrow x=2$ (thỏa mãn)

 

a: \(\Leftrightarrow2\sqrt{x+5}-3\sqrt{x+5}+\dfrac{4}{3}\cdot3\sqrt{x+5}=6\)

\(\Leftrightarrow3\sqrt{x+5}=6\)

=>x+5=4

hay x=-1

b: \(\Leftrightarrow5\sqrt{x-1}-\dfrac{15}{2}\cdot\dfrac{\sqrt{x-1}}{3}-\sqrt{x-1}=6\)

\(\Leftrightarrow\sqrt{x-1}\cdot\dfrac{3}{2}=6\)

\(\Leftrightarrow\sqrt{x-1}=4\)

=>x-1=16

hay x=17

24 tháng 6 2019

\(dat:\sqrt{x-5}=a\Rightarrow\sqrt{4\left(x-5\right)}+\sqrt{x-5}-\frac{1}{3}=\sqrt{9\left(x-5\right)}\Rightarrow\sqrt{4}.a+a-\frac{1}{3}=\sqrt{9}.a\Rightarrow3a-\frac{1}{3}=3a\left(voli\right)\Rightarrow vonghiem\)

24 tháng 6 2019

câu a chắc đề như zầy pk bạn???

\(\sqrt{4x-20}+\sqrt{x-5}-\frac{1}{3}+\sqrt{9x-45}=4\)

\(pt\Leftrightarrow2\sqrt{x-5}+\sqrt{x-5}+3\sqrt{x-5}=\frac{13}{3}\)

\(\Leftrightarrow6\sqrt{x-5}=\frac{13}{3}\Rightarrow\sqrt{x-5}=\frac{13}{18}\Leftrightarrow x=\frac{1789}{324}\)

b)đề như này đúng ko bạn??

\(\sqrt{16-32x}-\sqrt{12x}=\sqrt{3x}+\sqrt{9-18x}\)

\(\Leftrightarrow4\sqrt{1-2x}-2\sqrt{3x}=\sqrt{3x}+3\sqrt{1-2x}\)

\(\Leftrightarrow\sqrt{1-2x}-3\sqrt{3x}=0\Leftrightarrow\sqrt{1-2x}=3\sqrt{3x}\)

\(\Leftrightarrow1-2x=27x\Leftrightarrow x=\frac{1}{29}\)

câu c\(\sqrt{4x-20}-3\sqrt{\frac{x-5}{9}}=\sqrt{1-x}\)

Xét điều kiện \(\left\{{}\begin{matrix}x\le1\\x\ge5\end{matrix}\right.\)không tồn tại số nào nằm trong khoảng này

Vậy pt trên vô nghiệm

17 tháng 7 2019

a) \(\sqrt{1-4x+4x^2}=5\)

<=> \(\sqrt{4x^2-4x+1}=5\)

<=> 4x2 - 4x + 1 = 52

<=> 4x2 - 4x + 1 = 25

<=> 4x2 - 4x + 1 - 25 = 0

<=> 4x2 - 4x - 24 = 0

<=> 4(x + 2)(x - 3) = 0

<=> x = -2 hoặc x = 3

 => x = -2 hoặc x = 3

b) \(\sqrt{4-5x}=12\)

<=> \(\sqrt{-5x+4}=12\)

<=> -5x + 4 = 122

<=> -5x + 4 = 144

<=> -5x = 144 - 4

<=> -5x = 140

<=> x = -28

=> x = -28

\(a,\sqrt{1-4x+4x^2}=5\)

\(\Rightarrow4x^2-4x+1=25\)

\(\Rightarrow4x^2-4x-24=0\)

\(\Rightarrow x^2-x-6=0\)

\(\Rightarrow x^2-3x+2x-6=0\)

\(\Rightarrow x\left(x-3\right)+2\left(x-3\right)=0\)

\(\Rightarrow\left(x-3\right)\left(x+2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-3=0\\x+2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=3\\x=-2\end{cases}}}\)

\(b,\sqrt{4-5x}=12\)

\(\Rightarrow4-5x=144\)

\(\Rightarrow5x=-140\)

\(\Rightarrow x=-28\)

28 tháng 10 2020

a) \(\sqrt{4-5x}=12\)

ĐK : x ≤ 4/5

Bình phương hai vế

⇔ \(4-5x=144\)

⇔ \(-5x=140\)

⇔ \(x=-28\)( tm )

b) \(\sqrt{1-4x+4x^2}=5\)

⇔ \(\sqrt{\left(1-2x\right)^2}=5\)

⇔ \(\left|1-2x\right|=5\)

⇔ \(\orbr{\begin{cases}1-2x=5\\1-2x=-5\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-2\\x=3\end{cases}}\)

c) \(\sqrt{4x+20}-3\sqrt{5+x}+\frac{3}{4}\sqrt{9x+45}=6\)

ĐK : x ≥ -5

⇔ \(\sqrt{2^2\left(x+5\right)}-3\sqrt{x+5}+\frac{3}{4}\sqrt{3^2\left(x+5\right)}=6\)

⇔ \(\left|2\right|\sqrt{x+5}-3\sqrt{x+5}+\frac{3}{4}\cdot\left|3\right|\sqrt{x+5}=6\)

⇔ \(2\sqrt{x+5}-3\sqrt{x+5}+\frac{9}{4}\sqrt{x+5}=6\)

⇔ \(\frac{5}{4}\sqrt{x+5}=6\)

⇔ \(\sqrt{x+5}=\frac{24}{5}\)

⇔ \(x+5=\frac{576}{25}\)

⇔ \(x=\frac{451}{25}\)( tm )

d)\(\sqrt{x-2}\le3\)

ĐK : x ≥ 2

⇔ \(x-2\le9\)

⇔ \(x\le11\)

Kết hợp với điều kiện => Nghiệm của bpt là 2 ≤ x ≤ 11

NV
7 tháng 10 2019

Bạn tự tìm ĐKXĐ.

a/ \(\sqrt{4-5x}=12\Rightarrow4-5x=144\Rightarrow x=-28\)

b/ \(10+\sqrt{3x}=\left(2+\sqrt{6}\right)^2=10+4\sqrt{6}\)

\(\Rightarrow\sqrt{3x}=4\sqrt{6}\Rightarrow\sqrt{x}=4\sqrt{2}\)

\(\Rightarrow x=32\)

c/ \(2\sqrt{x+5}-3\sqrt{x+5}+4\sqrt{x+5}=6\)

\(\Leftrightarrow3\sqrt{x+5}=6\)

\(\Rightarrow\sqrt{x+5}=2\Rightarrow x+5=4\Rightarrow x=-1\)

d/ \(\sqrt{\left(x-3\right)\left(x+3\right)}-3\sqrt{x-3}=0\)

\(\Rightarrow\sqrt{x-3}\left(\sqrt{x+3}-3\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}\sqrt{x-3}=0\\\sqrt{x+3}=3\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=3\\x=6\end{matrix}\right.\)

e/ \(\sqrt{\frac{4x+3}{x+1}}=3\Leftrightarrow\frac{4x+3}{x+1}=9\)

\(\Rightarrow4x+3=9x+9\Rightarrow5x=-6\Rightarrow x=-\frac{6}{5}\)

f/ \(\sqrt{x-2}\le3\Rightarrow x-2\le9\Rightarrow2\le x\le11\)

29 tháng 11 2019

a/\(\sqrt{x^2-2x}=\sqrt{2-3x}\left(đk:x\le0\right) \)
\(\Leftrightarrow x^2-2x=2-3x\)
\(\Leftrightarrow x^2+x-2=0\Leftrightarrow\left(x-1\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\left(KTM\right)\\x=-2\left(TM\right)\end{matrix}\right.\)
Vậy x=-2 là nghiệm của PT
b/\(\sqrt{x-3}-2\sqrt{x^2-9}=0\left(đk:x\ge3\right)\)
\(\Leftrightarrow\sqrt{x-3}\left(1-2\sqrt{x+3}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-3}=0\\1=2\sqrt{x+3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\left(TM\right)\\4x+12=1\end{matrix}\right.\Leftrightarrow}\left[{}\begin{matrix}x=3\\x=-\frac{11}{4}\left(KTM\right)\end{matrix}\right.\)

Vậy x=3